
9 STATICS AND TORQUE

Figure 9.1 On a short time scale, rocks like these in Australia's Kings Canyon are static, or motionless relative to the Earth. (credit:
freeaussiestock.com)
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Connection for AP® Courses
What might desks, bridges, buildings, trees, and mountains have in common? What do these objects have in common with a car
moving at a constant velocity? While it may be apparent that the objects in the first group are all motionless relative to Earth, they
also share something with the moving car and all objects moving at a constant velocity. All of these objects, stationary and
moving, share an acceleration of zero. How can this be? Consider Newton's second law, F = ma. When acceleration is zero, as
is the case for both stationary objects and objects moving at a constant velocity, the net external force must also be zero (Big
Idea 3). Forces are acting on both stationary objects and on objects moving at a constant velocity, but the forces are balanced.
That is, they are in equilibrium. In equilibrium, the net force is zero.

The first two sections of this chapter will focus on the two conditions necessary for equilibrium. They will not only help you to
distinguish between stationary bridges and cars moving at constant velocity, but will introduce a second equilibrium condition,
this time involving rotation. As you explore the second equilibrium condition, you will learn about torque, in support of both
Enduring Understanding 3.F and Essential Knowledge 3.F.1. Much like a force, torque provides the capability for acceleration;
however, with careful attention, torques may also be balanced and equilibrium can be reached.

The remainder of this chapter will discuss a variety of interesting equilibrium applications. From the art of balancing, to simple
machines, to the muscles in your body, the world around you relies upon the principles of equilibrium to remain stable. This
chapter will help you to see just how closely related these events truly are.
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The content in this chapter supports:

Big Idea 3 The interactions of an object with other objects can be described by forces.

Enduring Understanding 3.F A force exerted on an object can cause a torque on that object.

Essential Knowledge 3.F.1 Only the force component perpendicular to the line connecting the axis of rotation and the point of
application of the force results in a torque about that axis.

9.1 The First Condition for Equilibrium

Learning Objectives
By the end of this section, you will be able to:

• State the first condition of equilibrium.
• Explain static equilibrium.
• Explain dynamic equilibrium.

The first condition necessary to achieve equilibrium is the one already mentioned: the net external force on the system must be
zero. Expressed as an equation, this is simply

(9.1)net F = 0

Note that if net F is zero, then the net external force in any direction is zero. For example, the net external forces along the
typical x- and y-axes are zero. This is written as

(9.2)net Fx = 0 and Fy = 0

Figure 9.2 and Figure 9.3 illustrate situations where net F = 0 for both static equilibrium (motionless), and dynamic
equilibrium (constant velocity).

Figure 9.2 This motionless person is in static equilibrium. The forces acting on him add up to zero. Both forces are vertical in this case.

Figure 9.3 This car is in dynamic equilibrium because it is moving at constant velocity. There are horizontal and vertical forces, but the net external
force in any direction is zero. The applied force Fapp between the tires and the road is balanced by air friction, and the weight of the car is supported

by the normal forces, here shown to be equal for all four tires.

However, it is not sufficient for the net external force of a system to be zero for a system to be in equilibrium. Consider the two
situations illustrated in Figure 9.4 and Figure 9.5 where forces are applied to an ice hockey stick lying flat on ice. The net
external force is zero in both situations shown in the figure; but in one case, equilibrium is achieved, whereas in the other, it is
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not. In Figure 9.4, the ice hockey stick remains motionless. But in Figure 9.5, with the same forces applied in different places,
the stick experiences accelerated rotation. Therefore, we know that the point at which a force is applied is another factor in
determining whether or not equilibrium is achieved. This will be explored further in the next section.

Figure 9.4 An ice hockey stick lying flat on ice with two equal and opposite horizontal forces applied to it. Friction is negligible, and the gravitational
force is balanced by the support of the ice (a normal force). Thus, net F = 0 . Equilibrium is achieved, which is static equilibrium in this case.

Figure 9.5 The same forces are applied at other points and the stick rotates—in fact, it experiences an accelerated rotation. Here net F = 0 but the

system is not at equilibrium. Hence, the net F = 0 is a necessary—but not sufficient—condition for achieving equilibrium.

PhET Explorations: Torque

Investigate how torque causes an object to rotate. Discover the relationships between angular acceleration, moment of
inertia, angular momentum and torque.

Figure 9.6 Torque (http://cnx.org/content/m55176/1.2/torque_en.jar)

9.2 The Second Condition for Equilibrium

Learning Objectives
By the end of this section, you will be able to:

• State the second condition that is necessary to achieve equilibrium.
• Explain torque and the factors on which it depends.
• Describe the role of torque in rotational mechanics.

The information presented in this section supports the following AP® learning objectives and science practices:

• 3.F.1.1 The student is able to use representations of the relationship between force and torque. (S.P. 1.4)
• 3.F.1.2 The student is able to compare the torques on an object caused by various forces. (S.P. 1.4)
• 3.F.1.3 The student is able to estimate the torque on an object caused by various forces in comparison to other

situations. (S.P. 2.3)
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Torque

The second condition necessary to achieve equilibrium involves avoiding accelerated rotation (maintaining a constant
angular velocity. A rotating body or system can be in equilibrium if its rate of rotation is constant and remains unchanged by
the forces acting on it. To understand what factors affect rotation, let us think about what happens when you open an
ordinary door by rotating it on its hinges.

Several familiar factors determine how effective you are in opening the door. See Figure 9.7. First of all, the larger the force, the
more effective it is in opening the door—obviously, the harder you push, the more rapidly the door opens. Also, the point at which
you push is crucial. If you apply your force too close to the hinges, the door will open slowly, if at all. Most people have been
embarrassed by making this mistake and bumping up against a door when it did not open as quickly as expected. Finally, the
direction in which you push is also important. The most effective direction is perpendicular to the door—we push in this direction
almost instinctively.

Figure 9.7 Torque is the turning or twisting effectiveness of a force, illustrated here for door rotation on its hinges (as viewed from overhead). Torque
has both magnitude and direction. (a) Counterclockwise torque is produced by this force, which means that the door will rotate in a counterclockwise
due to F . Note that r⊥ is the perpendicular distance of the pivot from the line of action of the force. (b) A smaller counterclockwise torque is

produced by a smaller force F′ acting at the same distance from the hinges (the pivot point). (c) The same force as in (a) produces a smaller
counterclockwise torque when applied at a smaller distance from the hinges. (d) The same force as in (a), but acting in the opposite direction, produces
a clockwise torque. (e) A smaller counterclockwise torque is produced by the same magnitude force acting at the same point but in a different direction.
Here, θ is less than 90º . (f) Torque is zero here since the force just pulls on the hinges, producing no rotation. In this case, θ = 0º .

The magnitude, direction, and point of application of the force are incorporated into the definition of the physical quantity called
torque. Torque is the rotational equivalent of a force. It is a measure of the effectiveness of a force in changing or accelerating a
rotation (changing the angular velocity over a period of time). In equation form, the magnitude of torque is defined to be

(9.3)τ = rF sin θ
where τ (the Greek letter tau) is the symbol for torque, r is the distance from the pivot point to the point where the force is

applied, F is the magnitude of the force, and θ is the angle between the force and the vector directed from the point of
application to the pivot point, as seen in Figure 9.7 and Figure 9.8. An alternative expression for torque is given in terms of the
perpendicular lever arm r ⊥ as shown in Figure 9.7 and Figure 9.8, which is defined as

(9.4)r ⊥ = r sin θ

so that

(9.5)τ = r⊥ F.
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Figure 9.8 A force applied to an object can produce a torque, which depends on the location of the pivot point. (a) The three factors r , F , and θ for

pivot point A on a body are shown here— r is the distance from the chosen pivot point to the point where the force F is applied, and θ is the angle

between F and the vector directed from the point of application to the pivot point. If the object can rotate around point A, it will rotate
counterclockwise. This means that torque is counterclockwise relative to pivot A. (b) In this case, point B is the pivot point. The torque from the applied
force will cause a clockwise rotation around point B, and so it is a clockwise torque relative to B.

The perpendicular lever arm r ⊥ is the shortest distance from the pivot point to the line along which F acts; it is shown as a

dashed line in Figure 9.7 and Figure 9.8. Note that the line segment that defines the distance r ⊥ is perpendicular to F , as its

name implies. It is sometimes easier to find or visualize r ⊥ than to find both r and θ . In such cases, it may be more

convenient to use τ = r ⊥ F rather than τ = rF sin θ for torque, but both are equally valid.

The SI unit of torque is newtons times meters, usually written as N · m . For example, if you push perpendicular to the door

with a force of 40 N at a distance of 0.800 m from the hinges, you exert a torque of 32 N·m(0.800 m×40 N×sin 90º) relative

to the hinges. If you reduce the force to 20 N, the torque is reduced to 16 N·m , and so on.

The torque is always calculated with reference to some chosen pivot point. For the same applied force, a different choice for the
location of the pivot will give you a different value for the torque, since both r and θ depend on the location of the pivot. Any
point in any object can be chosen to calculate the torque about that point. The object may not actually pivot about the chosen
“pivot point.”

Note that for rotation in a plane, torque has two possible directions. Torque is either clockwise or counterclockwise relative to the
chosen pivot point, as illustrated for points B and A, respectively, in Figure 9.8. If the object can rotate about point A, it will rotate
counterclockwise, which means that the torque for the force is shown as counterclockwise relative to A. But if the object can
rotate about point B, it will rotate clockwise, which means the torque for the force shown is clockwise relative to B. Also, the
magnitude of the torque is greater when the lever arm is longer.

Making Connections: Pivoting Block

A solid block of length d is pinned to a wall on its right end. Three forces act on the block as shown below: FA, FB, and FC.
While all three forces are of equal magnitude, and all three are equal distances away from the pivot point, all three forces will
create a different torque upon the object.

FA is vectored perpendicular to its distance from the pivot point; as a result, the magnitude of its torque can be found by the
equation τ=FA*d. Vector FB is parallel to the line connecting the point of application of force and the pivot point. As a result, it
does not provide an ability to rotate the object and, subsequently, its torque is zero. FC, however, is directed at an angle ϴ to
the line connecting the point of application of force and the pivot point. In this instance, only the component perpendicular to
this line is exerting a torque. This component, labeled F⊥, can be found using the equation F⊥=FCsinθ. The component of
the force parallel to this line, labeled F∥, does not provide an ability to rotate the object and, as a result, does not provide a
torque. Therefore, the resulting torque created by FC is τ=F⊥*d.
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Figure 9.9 Forces on a block pinned to a wall. A solid block of length d is pinned to a wall on its right end. Three forces act on the block: FA, FB,
and FC.

Now, the second condition necessary to achieve equilibrium is that the net external torque on a system must be zero. An external
torque is one that is created by an external force. You can choose the point around which the torque is calculated. The point can
be the physical pivot point of a system or any other point in space—but it must be the same point for all torques. If the second
condition (net external torque on a system is zero) is satisfied for one choice of pivot point, it will also hold true for any other
choice of pivot point in or out of the system of interest. (This is true only in an inertial frame of reference.) The second condition
necessary to achieve equilibrium is stated in equation form as

(9.6)net τ = 0
where net means total. Torques, which are in opposite directions are assigned opposite signs. A common convention is to call
counterclockwise (ccw) torques positive and clockwise (cw) torques negative.

When two children balance a seesaw as shown in Figure 9.10, they satisfy the two conditions for equilibrium. Most people have
perfect intuition about seesaws, knowing that the lighter child must sit farther from the pivot and that a heavier child can keep a
lighter one off the ground indefinitely.

Figure 9.10 Two children balancing a seesaw satisfy both conditions for equilibrium. The lighter child sits farther from the pivot to create a torque equal
in magnitude to that of the heavier child.

Example 9.1 She Saw Torques On A Seesaw

The two children shown in Figure 9.10 are balanced on a seesaw of negligible mass. (This assumption is made to keep the
example simple—more involved examples will follow.) The first child has a mass of 26.0 kg and sits 1.60 m from the pivot.(a)
If the second child has a mass of 32.0 kg, how far is she from the pivot? (b) What is Fp , the supporting force exerted by the

pivot?

Strategy

Both conditions for equilibrium must be satisfied. In part (a), we are asked for a distance; thus, the second condition
(regarding torques) must be used, since the first (regarding only forces) has no distances in it. To apply the second condition
for equilibrium, we first identify the system of interest to be the seesaw plus the two children. We take the supporting pivot to
be the point about which the torques are calculated. We then identify all external forces acting on the system.

Solution (a)
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The three external forces acting on the system are the weights of the two children and the supporting force of the pivot. Let
us examine the torque produced by each. Torque is defined to be

(9.7)τ = rF sin θ.

Here θ = 90º , so that sin θ = 1 for all three forces. That means r ⊥ = r for all three. The torques exerted by the three

forces are first,

(9.8)τ1 = r1w1

second,

(9.9)τ2 = – r2w2

and third,

(9.10)τp = rpFp

= 0 ⋅ Fp

= 0.
Note that a minus sign has been inserted into the second equation because this torque is clockwise and is therefore
negative by convention. Since Fp acts directly on the pivot point, the distance rp is zero. A force acting on the pivot

cannot cause a rotation, just as pushing directly on the hinges of a door will not cause it to rotate. Now, the second condition
for equilibrium is that the sum of the torques on both children is zero. Therefore

(9.11)τ2 = – τ1,

or

(9.12)r2 w2 = r1w1.

Weight is mass times the acceleration due to gravity. Entering mg for w , we get

(9.13)r2 m2 g = r1 m1 g.

Solve this for the unknown r2 :

(9.14)r2 = r1
m1
m2

.

The quantities on the right side of the equation are known; thus, r2 is

(9.15)
r2 = (1.60 m)26.0 kg

32.0 kg = 1.30 m.

As expected, the heavier child must sit closer to the pivot (1.30 m versus 1.60 m) to balance the seesaw.

Solution (b)

This part asks for a force Fp . The easiest way to find it is to use the first condition for equilibrium, which is

(9.16)net F = 0.
The forces are all vertical, so that we are dealing with a one-dimensional problem along the vertical axis; hence, the
condition can be written as

(9.17)net Fy = 0

where we again call the vertical axis the y-axis. Choosing upward to be the positive direction, and using plus and minus
signs to indicate the directions of the forces, we see that

(9.18)Fp – w1 – w2 = 0.

This equation yields what might have been guessed at the beginning:

(9.19)Fp = w1 + w2.

So, the pivot supplies a supporting force equal to the total weight of the system:

(9.20)Fp = m1g + m2g.

Entering known values gives
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(9.21)Fp = ⎛
⎝26.0 kg⎞

⎠
⎛
⎝9.80 m/s2⎞

⎠ + ⎛
⎝32.0 kg⎞

⎠
⎛
⎝9.80 m/s2⎞

⎠

= 568 N.
Discussion

The two results make intuitive sense. The heavier child sits closer to the pivot. The pivot supports the weight of the two
children. Part (b) can also be solved using the second condition for equilibrium, since both distances are known, but only if
the pivot point is chosen to be somewhere other than the location of the seesaw's actual pivot!

Several aspects of the preceding example have broad implications. First, the choice of the pivot as the point around which
torques are calculated simplified the problem. Since Fp is exerted on the pivot point, its lever arm is zero. Hence, the torque

exerted by the supporting force Fp is zero relative to that pivot point. The second condition for equilibrium holds for any choice

of pivot point, and so we choose the pivot point to simplify the solution of the problem.

Second, the acceleration due to gravity canceled in this problem, and we were left with a ratio of masses. This will not always be
the case. Always enter the correct forces—do not jump ahead to enter some ratio of masses.

Third, the weight of each child is distributed over an area of the seesaw, yet we treated the weights as if each force were exerted
at a single point. This is not an approximation—the distances r1 and r2 are the distances to points directly below the center of

gravity of each child. As we shall see in the next section, the mass and weight of a system can act as if they are located at a
single point.

Finally, note that the concept of torque has an importance beyond static equilibrium. Torque plays the same role in rotational
motion that force plays in linear motion. We will examine this in the next chapter.

Take-Home Experiment

Take a piece of modeling clay and put it on a table, then mash a cylinder down into it so that a ruler can balance on the
round side of the cylinder while everything remains still. Put a penny 8 cm away from the pivot. Where would you need to put
two pennies to balance? Three pennies?

9.3 Stability

Learning Objectives
By the end of this section, you will be able to:

• State the types of equilibrium.
• Describe stable and unstable equilibriums.
• Describe neutral equilibrium.

The information presented in this section supports the following AP® learning objectives and science practices:

• 3.F.1.1 The student is able to use representations of the relationship between force and torque. (S.P. 1.4)
• 3.F.1.2 The student is able to compare the torques on an object caused by various forces. (S.P. 1.4)
• 3.F.1.3 The student is able to estimate the torque on an object caused by various forces in comparison to other

situations. (S.P. 2.3)
• 3.F.1.4 The student is able to design an experiment and analyze data testing a question about torques in a balanced

rigid system. (S.P. 4.1, 4.2, 5.1)
• 3.F.1.5 The student is able to calculate torques on a two-dimensional system in static equilibrium, by examining a

representation or model (such as a diagram or physical construction). (S.P. 1.4, 2.2)

It is one thing to have a system in equilibrium; it is quite another for it to be stable. The toy doll perched on the man's hand in
Figure 9.11, for example, is not in stable equilibrium. There are three types of equilibrium: stable, unstable, and neutral. Figures
throughout this module illustrate various examples.

Figure 9.11 presents a balanced system, such as the toy doll on the man's hand, which has its center of gravity (cg) directly over
the pivot, so that the torque of the total weight is zero. This is equivalent to having the torques of the individual parts balanced
about the pivot point, in this case the hand. The cgs of the arms, legs, head, and torso are labeled with smaller type.
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Figure 9.11 A man balances a toy doll on one hand.

A system is said to be in stable equilibrium if, when displaced from equilibrium, it experiences a net force or torque in a
direction opposite to the direction of the displacement. For example, a marble at the bottom of a bowl will experience a restoring
force when displaced from its equilibrium position. This force moves it back toward the equilibrium position. Most systems are in
stable equilibrium, especially for small displacements. For another example of stable equilibrium, see the pencil in Figure 9.12.

Figure 9.12 This pencil is in the condition of equilibrium. The net force on the pencil is zero and the total torque about any pivot is zero.

A system is in unstable equilibrium if, when displaced, it experiences a net force or torque in the same direction as the
displacement from equilibrium. A system in unstable equilibrium accelerates away from its equilibrium position if displaced even
slightly. An obvious example is a ball resting on top of a hill. Once displaced, it accelerates away from the crest. See the next
several figures for examples of unstable equilibrium.

Figure 9.13 If the pencil is displaced slightly to the side (counterclockwise), it is no longer in equilibrium. Its weight produces a clockwise torque that
returns the pencil to its equilibrium position.
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Figure 9.14 If the pencil is displaced too far, the torque caused by its weight changes direction to counterclockwise and causes the displacement to
increase.

Figure 9.15 This figure shows unstable equilibrium, although both conditions for equilibrium are satisfied.

Figure 9.16 If the pencil is displaced even slightly, a torque is created by its weight that is in the same direction as the displacement, causing the
displacement to increase.

A system is in neutral equilibrium if its equilibrium is independent of displacements from its original position. A marble on a flat
horizontal surface is an example. Combinations of these situations are possible. For example, a marble on a saddle is stable for
displacements toward the front or back of the saddle and unstable for displacements to the side. Figure 9.17 shows another
example of neutral equilibrium.
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Figure 9.17 (a) Here we see neutral equilibrium. The cg of a sphere on a flat surface lies directly above the point of support, independent of the
position on the surface. The sphere is therefore in equilibrium in any location, and if displaced, it will remain put. (b) Because it has a circular cross
section, the pencil is in neutral equilibrium for displacements perpendicular to its length.

When we consider how far a system in stable equilibrium can be displaced before it becomes unstable, we find that some
systems in stable equilibrium are more stable than others. The pencil in Figure 9.12 and the person in Figure 9.18(a) are in
stable equilibrium, but become unstable for relatively small displacements to the side. The critical point is reached when the cg is
no longer above the base of support. Additionally, since the cg of a person's body is above the pivots in the hips, displacements
must be quickly controlled. This control is a central nervous system function that is developed when we learn to hold our bodies
erect as infants. For increased stability while standing, the feet should be spread apart, giving a larger base of support. Stability
is also increased by lowering one's center of gravity by bending the knees, as when a football player prepares to receive a ball or
braces themselves for a tackle. A cane, a crutch, or a walker increases the stability of the user, even more as the base of support
widens. Usually, the cg of a female is lower (closer to the ground) than a male. Young children have their center of gravity
between their shoulders, which increases the challenge of learning to walk.

Figure 9.18 (a) The center of gravity of an adult is above the hip joints (one of the main pivots in the body) and lies between two narrowly-separated
feet. Like a pencil standing on its eraser, this person is in stable equilibrium in relation to sideways displacements, but relatively small displacements
take his cg outside the base of support and make him unstable. Humans are less stable relative to forward and backward displacements because the
feet are not very long. Muscles are used extensively to balance the body in the front-to-back direction. (b) While bending in the manner shown, stability
is increased by lowering the center of gravity. Stability is also increased if the base is expanded by placing the feet farther apart.

Animals such as chickens have easier systems to control. Figure 9.19 shows that the cg of a chicken lies below its hip joints and
between its widely separated and broad feet. Even relatively large displacements of the chicken's cg are stable and result in
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restoring forces and torques that return the cg to its equilibrium position with little effort on the chicken's part. Not all birds are like
chickens, of course. Some birds, such as the flamingo, have balance systems that are almost as sophisticated as that of
humans.

Figure 9.19 shows that the cg of a chicken is below the hip joints and lies above a broad base of support formed by widely-
separated and large feet. Hence, the chicken is in very stable equilibrium, since a relatively large displacement is needed to
render it unstable. The body of the chicken is supported from above by the hips and acts as a pendulum between the hips.
Therefore, the chicken is stable for front-to-back displacements as well as for side-to-side displacements.

Figure 9.19 The center of gravity of a chicken is below the hip joints. The chicken is in stable equilibrium. The body of the chicken is supported from
above by the hips and acts as a pendulum between them.

Engineers and architects strive to achieve extremely stable equilibriums for buildings and other systems that must withstand
wind, earthquakes, and other forces that displace them from equilibrium. Although the examples in this section emphasize
gravitational forces, the basic conditions for equilibrium are the same for all types of forces. The net external force must be zero,
and the net torque must also be zero.

Take-Home Experiment

Stand straight with your heels, back, and head against a wall. Bend forward from your waist, keeping your heels and bottom
against the wall, to touch your toes. Can you do this without toppling over? Explain why and what you need to do to be able
to touch your toes without losing your balance. Is it easier for a woman to do this?

9.4 Applications of Statics, Including Problem-Solving Strategies

Learning Objectives
By the end of this section, you will be able to:

• Discuss the applications of statics in real life.
• State and discuss various problem-solving strategies in statics.

The information presented in this section supports the following AP® learning objectives and science practices:

• 3.F.1.1 The student is able to use representations of the relationship between force and torque. (S.P. 1.4)
• 3.F.1.2 The student is able to compare the torques on an object caused by various forces. (S.P. 1.4)
• 3.F.1.3 The student is able to estimate the torque on an object caused by various forces in comparison to other

situations. (S.P. 2.3)
• 3.F.1.4 The student is able to design an experiment and analyze data testing a question about torques in a balanced

rigid system. (S.P. 4.1, 4.2, 5.1)
• 3.F.1.5 The student is able to calculate torques on a two-dimensional system in static equilibrium, by examining a

representation or model (such as a diagram or physical construction). (S.P. 1.4, 2.2)

Statics can be applied to a variety of situations, ranging from raising a drawbridge to bad posture and back strain. We begin with
a discussion of problem-solving strategies specifically used for statics. Since statics is a special case of Newton's laws, both the
general problem-solving strategies and the special strategies for Newton's laws, discussed in Problem-Solving Strategies, still
apply.

Problem-Solving Strategy: Static Equilibrium Situations
1. The first step is to determine whether or not the system is in static equilibrium. This condition is always the case

when the acceleration of the system is zero and accelerated rotation does not occur.

2. It is particularly important to draw a free body diagram for the system of interest. Carefully label all forces, and note
their relative magnitudes, directions, and points of application whenever these are known.

3. Solve the problem by applying either or both of the conditions for equilibrium (represented by the equations
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net F = 0 and net τ = 0 , depending on the list of known and unknown factors. If the second condition is involved,
choose the pivot point to simplify the solution. Any pivot point can be chosen, but the most useful ones cause torques
by unknown forces to be zero. (Torque is zero if the force is applied at the pivot (then r = 0 ), or along a line through

the pivot point (then θ = 0 )). Always choose a convenient coordinate system for projecting forces.

4. Check the solution to see if it is reasonable by examining the magnitude, direction, and units of the answer. The
importance of this last step never diminishes, although in unfamiliar applications, it is usually more difficult to judge
reasonableness. These judgments become progressively easier with experience.

Now let us apply this problem-solving strategy for the pole vaulter shown in the three figures below. The pole is uniform and has
a mass of 5.00 kg. In Figure 9.20, the pole's cg lies halfway between the vaulter's hands. It seems reasonable that the force
exerted by each hand is equal to half the weight of the pole, or 24.5 N. This obviously satisfies the first condition for equilibrium
(net F = 0) . The second condition (net τ = 0) is also satisfied, as we can see by choosing the cg to be the pivot point. The

weight exerts no torque about a pivot point located at the cg, since it is applied at that point and its lever arm is zero. The equal
forces exerted by the hands are equidistant from the chosen pivot, and so they exert equal and opposite torques. Similar
arguments hold for other systems where supporting forces are exerted symmetrically about the cg. For example, the four legs of
a uniform table each support one-fourth of its weight.

In Figure 9.20, a pole vaulter holding a pole with its cg halfway between his hands is shown. Each hand exerts a force equal to
half the weight of the pole, FR = FL = w / 2 . (b) The pole vaulter moves the pole to his left, and the forces that the hands exert

are no longer equal. See Figure 9.20. If the pole is held with its cg to the left of the person, then he must push down with his
right hand and up with his left. The forces he exerts are larger here because they are in opposite directions and the cg is at a
long distance from either hand.

Similar observations can be made using a meter stick held at different locations along its length.

Figure 9.20 A pole vaulter holds a pole horizontally with both hands.

Figure 9.21 A pole vaulter is holding a pole horizontally with both hands. The center of gravity is near his right hand.
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Figure 9.22 A pole vaulter is holding a pole horizontally with both hands. The center of gravity is to the left side of the vaulter.

If the pole vaulter holds the pole as shown in Figure 9.210, the situation is not as simple. The total force he exerts is still equal to
the weight of the pole, but it is not evenly divided between his hands. (If FL = FR , then the torques about the cg would not be

equal since the lever arms are different.) Logically, the right hand should support more weight, since it is closer to the cg. In fact,
if the right hand is moved directly under the cg, it will support all the weight. This situation is exactly analogous to two people
carrying a load; the one closer to the cg carries more of its weight. Finding the forces FL and FR is straightforward, as the next

example shows.

If the pole vaulter holds the pole from near the end of the pole (Figure 9.22), the direction of the force applied by the right hand
of the vaulter reverses its direction.

Example 9.2 What Force Is Needed to Support a Weight Held Near Its CG?

For the situation shown in Figure 9.20, calculate: (a) FR , the force exerted by the right hand, and (b) FL , the force

exerted by the left hand. The hands are 0.900 m apart, and the cg of the pole is 0.600 m from the left hand.

Strategy

Figure 9.20 includes a free body diagram for the pole, the system of interest. There is not enough information to use the first
condition for equilibrium (net F = 0 ), since two of the three forces are unknown and the hand forces cannot be assumed to

be equal in this case. There is enough information to use the second condition for equilibrium (net τ = 0) if the pivot point

is chosen to be at either hand, thereby making the torque from that hand zero. We choose to locate the pivot at the left hand
in this part of the problem, to eliminate the torque from the left hand.

Solution for (a)

There are now only two nonzero torques, those from the gravitational force ( τw ) and from the push or pull of the right hand

( τR ). Stating the second condition in terms of clockwise and counterclockwise torques,

(9.22)net τcw = –net τccw.

or the algebraic sum of the torques is zero.

Here this is

(9.23)τR = –τw

since the weight of the pole creates a counterclockwise torque and the right hand counters with a clockwise toque. Using the
definition of torque, τ = rF sin θ , noting that θ = 90º , and substituting known values, we obtain

(9.24)(0.900 m)⎛
⎝FR

⎞
⎠ = (0.600 m)(mg).

Thus,

(9.25)FR = (0.667)⎛
⎝5.00 kg⎞

⎠
⎛
⎝9.80 m/s2⎞

⎠

= 32.7 N.
Solution for (b)

The first condition for equilibrium is based on the free body diagram in the figure. This implies that by Newton's second law:

(9.26)FL + FR – mg = 0
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From this we can conclude:

(9.27)FL + FR = w = mg

Solving for FL , we obtain

(9.28)FL = mg − FR
= mg − 32.7 N

= ⎛
⎝5.00 kg⎞

⎠
⎛
⎝9.80 m/s2⎞

⎠ − 32.7 N
= 16.3 N

Discussion

FL is seen to be exactly half of FR , as we might have guessed, since FL is applied twice as far from the cg as FR .

If the pole vaulter holds the pole as he might at the start of a run, shown in Figure 9.22, the forces change again. Both are
considerably greater, and one force reverses direction.

Take-Home Experiment

This is an experiment to perform while standing in a bus or a train. Stand facing sideways. How do you move your body to
readjust the distribution of your mass as the bus accelerates and decelerates? Now stand facing forward. How do you move
your body to readjust the distribution of your mass as the bus accelerates and decelerates? Why is it easier and safer to
stand facing sideways rather than forward? Note: For your safety (and those around you), make sure you are holding onto
something while you carry out this activity!

PhET Explorations: Balancing Act

Play with objects on a teeter totter to learn about balance. Test what you've learned by trying the Balance Challenge game.

Figure 9.23 Balancing Act (http://phet.colorado.edu/en/simulation/balancing-act)

9.5 Simple Machines

Learning Objectives
By the end of this section, you will be able to:

• Describe different simple machines.
• Calculate the mechanical advantage.

The information presented in this section supports the following AP® learning objectives and science practices:

• 3.F.1.1 The student is able to use representations of the relationship between force and torque. (S.P. 1.4)
• 3.F.1.2 The student is able to compare the torques on an object caused by various forces. (S.P. 1.4)
• 3.F.1.3 The student is able to estimate the torque on an object caused by various forces in comparison to other

situations. (S.P. 2.3)
• 3.F.1.5 The student is able to calculate torques on a two-dimensional system in static equilibrium, by examining a

representation or model (such as a diagram or physical construction). (S.P. 1.4, 2.2)

Simple machines are devices that can be used to multiply or augment a force that we apply – often at the expense of a distance
through which we apply the force. The word for “machine” comes from the Greek word meaning “to help make things easier.”
Levers, gears, pulleys, wedges, and screws are some examples of machines. Energy is still conserved for these devices
because a machine cannot do more work than the energy put into it. However, machines can reduce the input force that is
needed to perform the job. The ratio of output to input force magnitudes for any simple machine is called its mechanical
advantage (MA).
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(9.29)MA = Fo
Fi

One of the simplest machines is the lever, which is a rigid bar pivoted at a fixed place called the fulcrum. Torques are involved in
levers, since there is rotation about a pivot point. Distances from the physical pivot of the lever are crucial, and we can obtain a
useful expression for the MA in terms of these distances.

Figure 9.24 A nail puller is a lever with a large mechanical advantage. The external forces on the nail puller are represented by solid arrows. The force
that the nail puller applies to the nail ( Fo ) is not a force on the nail puller. The reaction force the nail exerts back on the puller ( Fn ) is an external

force and is equal and opposite to Fo . The perpendicular lever arms of the input and output forces are li and l0 .

Figure 9.24 shows a lever type that is used as a nail puller. Crowbars, seesaws, and other such levers are all analogous to this
one. Fi is the input force and Fo is the output force. There are three vertical forces acting on the nail puller (the system of

interest) – these are Fi , Fo , and N . Fn is the reaction force back on the system, equal and opposite to Fo . (Note that Fo

is not a force on the system.) N is the normal force upon the lever, and its torque is zero since it is exerted at the pivot. The

torques due to Fi and Fn must be equal to each other if the nail is not moving, to satisfy the second condition for equilibrium

(net τ = 0) . (In order for the nail to actually move, the torque due to Fi must be ever-so-slightly greater than torque due to

Fn .) Hence,

(9.30)li Fi = loFo

where li and lo are the distances from where the input and output forces are applied to the pivot, as shown in the figure.

Rearranging the last equation gives

(9.31)Fo
Fi

= li
lo

.

What interests us most here is that the magnitude of the force exerted by the nail puller, Fo , is much greater than the magnitude

of the input force applied to the puller at the other end, Fi . For the nail puller,

(9.32)
MA = Fo

Fi
= li

lo
.

This equation is true for levers in general. For the nail puller, the MA is certainly greater than one. The longer the handle on the
nail puller, the greater the force you can exert with it.

Two other types of levers that differ slightly from the nail puller are a wheelbarrow and a shovel, shown in Figure 9.25. All these
lever types are similar in that only three forces are involved – the input force, the output force, and the force on the pivot – and

thus their MAs are given by MA = Fo
Fi

and MA = d1
d2

, with distances being measured relative to the physical pivot. The

wheelbarrow and shovel differ from the nail puller because both the input and output forces are on the same side of the pivot.

In the case of the wheelbarrow, the output force or load is between the pivot (the wheel's axle) and the input or applied force. In
the case of the shovel, the input force is between the pivot (at the end of the handle) and the load, but the input lever arm is
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shorter than the output lever arm. In this case, the MA is less than one.

Figure 9.25 (a) In the case of the wheelbarrow, the output force or load is between the pivot and the input force. The pivot is the wheel's axle. Here, the
output force is greater than the input force. Thus, a wheelbarrow enables you to lift much heavier loads than you could with your body alone. (b) In the
case of the shovel, the input force is between the pivot and the load, but the input lever arm is shorter than the output lever arm. The pivot is at the
handle held by the right hand. Here, the output force (supporting the shovel's load) is less than the input force (from the hand nearest the load),
because the input is exerted closer to the pivot than is the output.

Example 9.3 What is the Advantage for the Wheelbarrow?

In the wheelbarrow of Figure 9.25, the load has a perpendicular lever arm of 7.50 cm, while the hands have a perpendicular
lever arm of 1.02 m. (a) What upward force must you exert to support the wheelbarrow and its load if their combined mass is
45.0 kg? (b) What force does the wheelbarrow exert on the ground?

Strategy

Here, we use the concept of mechanical advantage.

Solution

(a) In this case,
Fo
Fi

= li
lo

becomes

(9.33)
Fi = Fo

lo
li

.

Adding values into this equation yields

(9.34)Fi = ⎛
⎝45.0 kg⎞

⎠
⎛
⎝9.80 m/s2⎞

⎠
0.075 m
1.02 m = 32.4 N.

The free-body diagram (see Figure 9.25) gives the following normal force: Fi + N = W . Therefore,

N = (45.0 kg)⎛
⎝9.80 m/s2⎞

⎠ − 32.4 N = 409 N . N is the normal force acting on the wheel; by Newton's third law, the

force the wheel exerts on the ground is 409 N .

Discussion

An even longer handle would reduce the force needed to lift the load. The MA here is MA = 1.02 / 0.0750 = 13.6 .

Another very simple machine is the inclined plane. Pushing a cart up a plane is easier than lifting the same cart straight up to the
top using a ladder, because the applied force is less. However, the work done in both cases (assuming the work done by friction
is negligible) is the same. Inclined lanes or ramps were probably used during the construction of the Egyptian pyramids to move
large blocks of stone to the top.
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A crank is a lever that can be rotated 360º about its pivot, as shown in Figure 9.26. Such a machine may not look like a lever,

but the physics of its actions remain the same. The MA for a crank is simply the ratio of the radii ri / r0 . Wheels and gears have

this simple expression for their MAs too. The MA can be greater than 1, as it is for the crank, or less than 1, as it is for the
simplified car axle driving the wheels, as shown. If the axle's radius is 2.0 cm and the wheel's radius is 24.0 cm , then

MA = 2.0 / 24.0 = 0.083 and the axle would have to exert a force of 12,000 N on the wheel to enable it to exert a force of

1000 N on the ground.

Figure 9.26 (a) A crank is a type of lever that can be rotated 360º about its pivot. Cranks are usually designed to have a large MA. (b) A simplified
automobile axle drives a wheel, which has a much larger diameter than the axle. The MA is less than 1. (c) An ordinary pulley is used to lift a heavy
load. The pulley changes the direction of the force T exerted by the cord without changing its magnitude. Hence, this machine has an MA of 1.

An ordinary pulley has an MA of 1; it only changes the direction of the force and not its magnitude. Combinations of pulleys, such
as those illustrated in Figure 9.27, are used to multiply force. If the pulleys are friction-free, then the force output is
approximately an integral multiple of the tension in the cable. The number of cables pulling directly upward on the system of
interest, as illustrated in the figures given below, is approximately the MA of the pulley system. Since each attachment applies an
external force in approximately the same direction as the others, they add, producing a total force that is nearly an integral
multiple of the input force T .
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Figure 9.27 (a) The combination of pulleys is used to multiply force. The force is an integral multiple of tension if the pulleys are frictionless. This pulley
system has two cables attached to its load, thus applying a force of approximately 2T . This machine has MA ≈ 2 . (b) Three pulleys are used to
lift a load in such a way that the mechanical advantage is about 3. Effectively, there are three cables attached to the load. (c) This pulley system
applies a force of 4T , so that it has MA ≈ 4 . Effectively, four cables are pulling on the system of interest.

9.6 Forces and Torques in Muscles and Joints

Learning Objectives
By the end of this section, you will be able to:

• Explain the forces exerted by muscles.
• State how a bad posture causes back strain.
• Discuss the benefits of skeletal muscles attached close to joints.
• Discuss various complexities in the real system of muscles, bones, and joints.

The information presented in this section supports the following AP® learning objectives and science practices:

• 3.F.1.1 The student is able to use representations of the relationship between force and torque. (S.P. 1.4)
• 3.F.1.2 The student is able to compare the torques on an object caused by various forces. (S.P. 1.4)
• 3.F.1.3 The student is able to estimate the torque on an object caused by various forces in comparison to other

situations. (S.P. 4.1, 4.2, 5.1)
• 3.F.1.5 The student is able to calculate torques on a two-dimensional system in static equilibrium, by examining a

representation or model (such as a diagram or physical construction). (S.P. 1.4, 2.2)

Muscles, bones, and joints are some of the most interesting applications of statics. There are some surprises. Muscles, for
example, exert far greater forces than we might think. Figure 9.28 shows a forearm holding a book and a schematic diagram of
an analogous lever system. The schematic is a good approximation for the forearm, which looks more complicated than it is, and
we can get some insight into the way typical muscle systems function by analyzing it.

Muscles can only contract, so they occur in pairs. In the arm, the biceps muscle is a flexor—that is, it closes the limb. The triceps
muscle is an extensor that opens the limb. This configuration is typical of skeletal muscles, bones, and joints in humans and
other vertebrates. Most skeletal muscles exert much larger forces within the body than the limbs apply to the outside world. The
reason is clear once we realize that most muscles are attached to bones via tendons close to joints, causing these systems to
have mechanical advantages much less than one. Viewing them as simple machines, the input force is much greater than the
output force, as seen in Figure 9.28.
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Figure 9.28 (a) The figure shows the forearm of a person holding a book. The biceps exert a force FB to support the weight of the forearm and the

book. The triceps are assumed to be relaxed. (b) Here, you can view an approximately equivalent mechanical system with the pivot at the elbow joint
as seen in Example 9.4.

Example 9.4 Muscles Exert Bigger Forces Than You Might Think

Calculate the force the biceps muscle must exert to hold the forearm and its load as shown in Figure 9.28, and compare this
force with the weight of the forearm plus its load. You may take the data in the figure to be accurate to three significant
figures.

Strategy

There are four forces acting on the forearm and its load (the system of interest). The magnitude of the force of the biceps is
FB ; that of the elbow joint is FE ; that of the weights of the forearm is wa , and its load is wb . Two of these are unknown

( FB and FE ), so that the first condition for equilibrium cannot by itself yield FB . But if we use the second condition and

choose the pivot to be at the elbow, then the torque due to FE is zero, and the only unknown becomes FB .

Solution

The torques created by the weights are clockwise relative to the pivot, while the torque created by the biceps is
counterclockwise; thus, the second condition for equilibrium (net τ = 0) becomes

(9.35)r2 wa + r3wb = r1FB.

Note that sin θ = 1 for all forces, since θ = 90º for all forces. This equation can easily be solved for FB in terms of

known quantities, yielding

(9.36)FB = r2 wa + r3wb
r1

.
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Entering the known values gives

(9.37)
FB =

(0.160 m)⎛
⎝2.50 kg⎞

⎠
⎛
⎝9.80 m/s2⎞

⎠ + (0.380 m)⎛
⎝4.00 kg⎞

⎠
⎛
⎝9.80 m/s2⎞

⎠
0.0400 m

which yields

(9.38)FB = 470 N.

Now, the combined weight of the arm and its load is ⎛
⎝6.50 kg⎞

⎠
⎛
⎝9.80 m/s2⎞

⎠ = 63.7 N , so that the ratio of the force exerted

by the biceps to the total weight is

(9.39)FB
wa + wb

= 470
63.7 = 7.38.

Discussion

This means that the biceps muscle is exerting a force 7.38 times the weight supported.

In the above example of the biceps muscle, the angle between the forearm and upper arm is 90°. If this angle changes, the force
exerted by the biceps muscle also changes. In addition, the length of the biceps muscle changes. The force the biceps muscle
can exert depends upon its length; it is smaller when it is shorter than when it is stretched.

Very large forces are also created in the joints. In the previous example, the downward force FE exerted by the humerus at the

elbow joint equals 407 N, or 6.38 times the total weight supported. (The calculation of FE is straightforward and is left as an

end-of-chapter problem.) Because muscles can contract, but not expand beyond their resting length, joints and muscles often
exert forces that act in opposite directions and thus subtract. (In the above example, the upward force of the muscle minus the
downward force of the joint equals the weight supported—that is, 470 N – 407 N = 63 N , approximately equal to the weight
supported.) Forces in muscles and joints are largest when their load is a long distance from the joint, as the book is in the
previous example.

In racquet sports such as tennis the constant extension of the arm during game play creates large forces in this way. The mass
times the lever arm of a tennis racquet is an important factor, and many players use the heaviest racquet they can handle. It is no
wonder that joint deterioration and damage to the tendons in the elbow, such as “tennis elbow,” can result from repetitive motion,
undue torques, and possibly poor racquet selection in such sports. Various tried techniques for holding and using a racquet or
bat or stick not only increases sporting prowess but can minimize fatigue and long-term damage to the body. For example, tennis
balls correctly hit at the “sweet spot” on the racquet will result in little vibration or impact force being felt in the racquet and the
body—less torque as explained in Collisions of Extended Bodies in Two Dimensions. Twisting the hand to provide top spin
on the ball or using an extended rigid elbow in a backhand stroke can also aggravate the tendons in the elbow.

Training coaches and physical therapists use the knowledge of relationships between forces and torques in the treatment of
muscles and joints. In physical therapy, an exercise routine can apply a particular force and torque which can, over a period of
time, revive muscles and joints. Some exercises are designed to be carried out under water, because this requires greater forces
to be exerted, further strengthening muscles. However, connecting tissues in the limbs, such as tendons and cartilage as well as
joints are sometimes damaged by the large forces they carry. Often, this is due to accidents, but heavily muscled athletes, such
as weightlifters, can tear muscles and connecting tissue through effort alone.

The back is considerably more complicated than the arm or leg, with various muscles and joints between vertebrae, all having
mechanical advantages less than 1. Back muscles must, therefore, exert very large forces, which are borne by the spinal
column. Discs crushed by mere exertion are very common. The jaw is somewhat exceptional—the masseter muscles that close
the jaw have a mechanical advantage greater than 1 for the back teeth, allowing us to exert very large forces with them. A cause
of stress headaches is persistent clenching of teeth where the sustained large force translates into fatigue in muscles around the
skull.

Figure 9.29 shows how bad posture causes back strain. In part (a), we see a person with good posture. Note that her upper
body's cg is directly above the pivot point in the hips, which in turn is directly above the base of support at her feet. Because of
this, her upper body's weight exerts no torque about the hips. The only force needed is a vertical force at the hips equal to the
weight supported. No muscle action is required, since the bones are rigid and transmit this force from the floor. This is a position
of unstable equilibrium, but only small forces are needed to bring the upper body back to vertical if it is slightly displaced. Bad
posture is shown in part (b); we see that the upper body's cg is in front of the pivot in the hips. This creates a clockwise torque
around the hips that is counteracted by muscles in the lower back. These muscles must exert large forces, since they have
typically small mechanical advantages. (In other words, the perpendicular lever arm for the muscles is much smaller than for the
cg.) Poor posture can also cause muscle strain for people sitting at their desks using computers. Special chairs are available that
allow the body's CG to be more easily situated above the seat, to reduce back pain. Prolonged muscle action produces muscle
strain. Note that the cg of the entire body is still directly above the base of support in part (b) of Figure 9.29. This is compulsory;
otherwise the person would not be in equilibrium. We lean forward for the same reason when carrying a load on our backs, to the
side when carrying a load in one arm, and backward when carrying a load in front of us, as seen in Figure 9.30.

Chapter 9 | Statics and Torque 381



Figure 9.29 (a) Good posture places the upper body's cg over the pivots in the hips, eliminating the need for muscle action to balance the body. (b)
Poor posture requires exertion by the back muscles to counteract the clockwise torque produced around the pivot by the upper body's weight. The
back muscles have a small effective perpendicular lever arm, rb ⊥ , and must therefore exert a large force Fb . Note that the legs lean backward

to keep the cg of the entire body above the base of support in the feet.

You have probably been warned against lifting objects with your back. This action, even more than bad posture, can cause
muscle strain and damage discs and vertebrae, since abnormally large forces are created in the back muscles and spine.

Figure 9.30 People adjust their stance to maintain balance. (a) A father carrying his son piggyback leans forward to position their overall cg above the
base of support at his feet. (b) A student carrying a shoulder bag leans to the side to keep the overall cg over his feet. (c) Another student carrying a
load of books in her arms leans backward for the same reason.

Example 9.5 Do Not Lift with Your Back

Consider the person lifting a heavy box with his back, shown in Figure 9.31. (a) Calculate the magnitude of the force FB –
in the back muscles that is needed to support the upper body plus the box and compare this with his weight. The mass of
the upper body is 55.0 kg and the mass of the box is 30.0 kg. (b) Calculate the magnitude and direction of the force FV –
exerted by the vertebrae on the spine at the indicated pivot point. Again, data in the figure may be taken to be accurate to
three significant figures.

Strategy

By now, we sense that the second condition for equilibrium is a good place to start, and inspection of the known values
confirms that it can be used to solve for FB – if the pivot is chosen to be at the hips. The torques created by wub and

wbox – are clockwise, while that created by FB – is counterclockwise.

Solution for (a)

Using the perpendicular lever arms given in the figure, the second condition for equilibrium (net τ = 0) becomes

(9.40)(0.350 m)⎛
⎝55.0 kg⎞

⎠
⎛
⎝9.80 m/s2⎞

⎠ + (0.500 m)⎛
⎝30.0 kg⎞

⎠
⎛
⎝9.80 m/s2⎞

⎠ = (0.0800 m)FB.
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Solving for FB yields

(9.41)FB = 4.20×103 N.

The ratio of the force the back muscles exert to the weight of the upper body plus its load is

(9.42)FB
wub + wbox

= 4200 N
833 N = 5.04.

This force is considerably larger than it would be if the load were not present.

Solution for (b)

More important in terms of its damage potential is the force on the vertebrae FV . The first condition for equilibrium (

net F = 0 ) can be used to find its magnitude and direction. Using y for vertical and x for horizontal, the condition for the

net external forces along those axes to be zero

(9.43)net Fy = 0 and net Fx = 0.

Starting with the vertical ( y ) components, this yields

(9.44)FVy – wub – wbox – FB sin 29.0º = 0.

Thus,

(9.45)FVy = wub + wbox + FB sin 29.0º
= 833 N + (4200 N) sin 29.0º

yielding

(9.46)FVy = 2.87×103 N.

Similarly, for the horizontal ( x ) components,

(9.47)FVx – FB cos 29.0º = 0

yielding

(9.48)FVx = 3.67×103 N.

The magnitude of FV is given by the Pythagorean theorem:

(9.49)FV = FVx
2 + FVy

2 = 4.66×103 N.

The direction of FV is

(9.50)
θ = tan – 1⎛

⎝
FVy
FVx

⎞
⎠ = 38.0º.

Note that the ratio of FV to the weight supported is

(9.51)FV
wub + wbox

= 4660 N
833 N = 5.59.

Discussion

This force is about 5.6 times greater than it would be if the person were standing erect. The trouble with the back is not so
much that the forces are large—because similar forces are created in our hips, knees, and ankles—but that our spines are
relatively weak. Proper lifting, performed with the back erect and using the legs to raise the body and load, creates much
smaller forces in the back—in this case, about 5.6 times smaller.
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center of gravity:

dynamic equilibrium:

mechanical advantage:

neutral equilibrium:

perpendicular lever arm:

SI units of torque:

stable equilibrium:

static equilibrium:

static equilibrium:

torque:

unstable equilibrium:

Figure 9.31 This figure shows that large forces are exerted by the back muscles and experienced in the vertebrae when a person lifts with their back,
since these muscles have small effective perpendicular lever arms. The data shown here are analyzed in the preceding example, Example 9.5.

What are the benefits of having most skeletal muscles attached so close to joints? One advantage is speed because small
muscle contractions can produce large movements of limbs in a short period of time. Other advantages are flexibility and agility,
made possible by the large numbers of joints and the ranges over which they function. For example, it is difficult to imagine a
system with biceps muscles attached at the wrist that would be capable of the broad range of movement we vertebrates
possess.

There are some interesting complexities in real systems of muscles, bones, and joints. For instance, the pivot point in many
joints changes location as the joint is flexed, so that the perpendicular lever arms and the mechanical advantage of the system
change, too. Thus the force the biceps muscle must exert to hold up a book varies as the forearm is flexed. Similar mechanisms
operate in the legs, which explain, for example, why there is less leg strain when a bicycle seat is set at the proper height. The
methods employed in this section give a reasonable description of real systems provided enough is known about the dimensions
of the system. There are many other interesting examples of force and torque in the body—a few of these are the subject of end-
of-chapter problems.

Glossary
the point where the total weight of the body is assumed to be concentrated

a state of equilibrium in which the net external force and torque on a system moving with constant
velocity are zero

the ratio of output to input forces for any simple machine

a state of equilibrium that is independent of a system's displacements from its original position

the shortest distance from the pivot point to the line along which F lies

newton times meters, usually written as N·m

a system, when displaced, experiences a net force or torque in a direction opposite to the direction of the
displacement

a state of equilibrium in which the net external force and torque acting on a system is zero

equilibrium in which the acceleration of the system is zero and accelerated rotation does not occur

turning or twisting effectiveness of a force

a system, when displaced, experiences a net force or torque in the same direction as the displacement
from equilibrium
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Section Summary

9.1 The First Condition for Equilibrium
• Statics is the study of forces in equilibrium.
• Two conditions must be met to achieve equilibrium, which is defined to be motion without linear or rotational acceleration.
• The first condition necessary to achieve equilibrium is that the net external force on the system must be zero, so that

net F = 0 .

9.2 The Second Condition for Equilibrium
• The second condition assures those torques are also balanced. Torque is the rotational equivalent of a force in producing a

rotation and is defined to be
τ = rF sin θ

where τ is torque, r is the distance from the pivot point to the point where the force is applied, F is the magnitude of the

force, and θ is the angle between F and the vector directed from the point where the force acts to the pivot point. The
perpendicular lever arm r⊥ is defined to be

r⊥ = r sin θ
so that

τ = r⊥ F.
• The perpendicular lever arm r⊥ is the shortest distance from the pivot point to the line along which F acts. The SI unit

for torque is newton-meter (N·m) . The second condition necessary to achieve equilibrium is that the net external torque

on a system must be zero:
net τ = 0

By convention, counterclockwise torques are positive, and clockwise torques are negative.

9.3 Stability
• A system is said to be in stable equilibrium if, when displaced from equilibrium, it experiences a net force or torque in a

direction opposite the direction of the displacement.
• A system is in unstable equilibrium if, when displaced from equilibrium, it experiences a net force or torque in the same

direction as the displacement from equilibrium.
• A system is in neutral equilibrium if its equilibrium is independent of displacements from its original position.

9.4 Applications of Statics, Including Problem-Solving Strategies
• Statics can be applied to a variety of situations, ranging from raising a drawbridge to bad posture and back strain. We have

discussed the problem-solving strategies specifically useful for statics. Statics is a special case of Newton's laws, both the
general problem-solving strategies and the special strategies for Newton's laws, discussed in Problem-Solving
Strategies, still apply.

9.5 Simple Machines
• Simple machines are devices that can be used to multiply or augment a force that we apply – often at the expense of a

distance through which we have to apply the force.
• The ratio of output to input forces for any simple machine is called its mechanical advantage
• A few simple machines are the lever, nail puller, wheelbarrow, crank, etc.

9.6 Forces and Torques in Muscles and Joints
• Statics plays an important part in understanding everyday strains in our muscles and bones.
• Many lever systems in the body have a mechanical advantage of significantly less than one, as many of our muscles are

attached close to joints.
• Someone with good posture stands or sits in such a way that the person's center of gravity lies directly above the pivot

point in the hips, thereby avoiding back strain and damage to disks.

Conceptual Questions

9.1 The First Condition for Equilibrium
1. What can you say about the velocity of a moving body that is in dynamic equilibrium? Draw a sketch of such a body using
clearly labeled arrows to represent all external forces on the body.

2. Under what conditions can a rotating body be in equilibrium? Give an example.
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9.2 The Second Condition for Equilibrium
3. What three factors affect the torque created by a force relative to a specific pivot point?

4. A wrecking ball is being used to knock down a building. One tall unsupported concrete wall remains standing. If the wrecking
ball hits the wall near the top, is the wall more likely to fall over by rotating at its base or by falling straight down? Explain your
answer. How is it most likely to fall if it is struck with the same force at its base? Note that this depends on how firmly the wall is
attached at its base.

5. Mechanics sometimes put a length of pipe over the handle of a wrench when trying to remove a very tight bolt. How does this
help? (It is also hazardous since it can break the bolt.)

9.3 Stability
6. A round pencil lying on its side as in Figure 9.14 is in neutral equilibrium relative to displacements perpendicular to its length.
What is its stability relative to displacements parallel to its length?

7. Explain the need for tall towers on a suspension bridge to ensure stable equilibrium.

9.4 Applications of Statics, Including Problem-Solving Strategies
8. When visiting some countries, you may see a person balancing a load on the head. Explain why the center of mass of the load
needs to be directly above the person's neck vertebrae.

9.5 Simple Machines
9. Scissors are like a double-lever system. Which of the simple machines in Figure 9.24 and Figure 9.25 is most analogous to
scissors?

10. Suppose you pull a nail at a constant rate using a nail puller as shown in Figure 9.24. Is the nail puller in equilibrium? What if
you pull the nail with some acceleration – is the nail puller in equilibrium then? In which case is the force applied to the nail puller
larger and why?

11. Why are the forces exerted on the outside world by the limbs of our bodies usually much smaller than the forces exerted by
muscles inside the body?

12. Explain why the forces in our joints are several times larger than the forces we exert on the outside world with our limbs. Can
these forces be even greater than muscle forces (see previous Question)?

9.6 Forces and Torques in Muscles and Joints
13. Why are the forces exerted on the outside world by the limbs of our bodies usually much smaller than the forces exerted by
muscles inside the body?

14. Explain why the forces in our joints are several times larger than the forces we exert on the outside world with our limbs. Can
these forces be even greater than muscle forces?

15. Certain types of dinosaurs were bipedal (walked on two legs). What is a good reason that these creatures invariably had long
tails if they had long necks?

16. Swimmers and athletes during competition need to go through certain postures at the beginning of the race. Consider the
balance of the person and why start-offs are so important for races.

17. If the maximum force the biceps muscle can exert is 1000 N, can we pick up an object that weighs 1000 N? Explain your
answer.

18. Suppose the biceps muscle was attached through tendons to the upper arm close to the elbow and the forearm near the
wrist. What would be the advantages and disadvantages of this type of construction for the motion of the arm?

19. Explain one of the reasons why pregnant women often suffer from back strain late in their pregnancy.
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Problems & Exercises

9.2 The Second Condition for Equilibrium
1. (a) When opening a door, you push on it perpendicularly
with a force of 55.0 N at a distance of 0.850m from the
hinges. What torque are you exerting relative to the hinges?
(b) Does it matter if you push at the same height as the
hinges?

2. When tightening a bolt, you push perpendicularly on a
wrench with a force of 165 N at a distance of 0.140 m from
the center of the bolt. (a) How much torque are you exerting
in newton × meters (relative to the center of the bolt)? (b)
Convert this torque to footpounds.

3. Two children push on opposite sides of a door during play.
Both push horizontally and perpendicular to the door. One
child pushes with a force of 17.5 N at a distance of 0.600 m
from the hinges, and the second child pushes at a distance of
0.450 m. What force must the second child exert to keep the
door from moving? Assume friction is negligible.

4. Use the second condition for equilibrium (net τ = 0) to

calculate Fp in Example 9.1, employing any data given or

solved for in part (a) of the example.

5. Repeat the seesaw problem in Example 9.1 with the
center of mass of the seesaw 0.160 m to the left of the pivot
(on the side of the lighter child) and assuming a mass of 12.0
kg for the seesaw. The other data given in the example
remain unchanged. Explicitly show how you follow the steps
in the Problem-Solving Strategy for static equilibrium.

9.3 Stability
6. Suppose a horse leans against a wall as in Figure 9.32.
Calculate the force exerted on the wall assuming that force is
horizontal while using the data in the schematic
representation of the situation. Note that the force exerted on
the wall is equal in magnitude and opposite in direction to the
force exerted on the horse, keeping it in equilibrium. The total
mass of the horse and rider is 500 kg. Take the data to be
accurate to three digits.

Figure 9.32

7. Two children of mass 20 kg and 30 kg sit balanced on a
seesaw with the pivot point located at the center of the
seesaw. If the children are separated by a distance of 3 m, at
what distance from the pivot point is the small child sitting in
order to maintain the balance?

8. (a) Calculate the magnitude and direction of the force on
each foot of the horse in Figure 9.32 (two are on the ground),
assuming the center of mass of the horse is midway between
the feet. The total mass of the horse and rider is 500kg. (b)
What is the minimum coefficient of friction between the
hooves and ground? Note that the force exerted by the wall is
horizontal.

9. A person carries a plank of wood 2 m long with one hand
pushing down on it at one end with a force F1 and the other

hand holding it up at 50 cm from the end of the plank with
force F2 . If the plank has a mass of 20 kg and its center of

gravity is at the middle of the plank, what are the magnitudes
of the forces F1 and F2 ?

10. A 17.0-m-high and 11.0-m-long wall under construction
and its bracing are shown in Figure 9.33. The wall is in stable
equilibrium without the bracing but can pivot at its base.
Calculate the force exerted by each of the 10 braces if a
strong wind exerts a horizontal force of 650 N on each square
meter of the wall. Assume that the net force from the wind
acts at a height halfway up the wall and that all braces exert
equal forces parallel to their lengths. Neglect the thickness of
the wall.

Figure 9.33

11. (a) What force must be exerted by the wind to support a
2.50-kg chicken in the position shown in Figure 9.34? (b)
What is the ratio of this force to the chicken's weight? (c)
Does this support the contention that the chicken has a
relatively stable construction?

Figure 9.34
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12. Suppose the weight of the drawbridge in Figure 9.35 is
supported entirely by its hinges and the opposite shore, so
that its cables are slack. (a) What fraction of the weight is
supported by the opposite shore if the point of support is
directly beneath the cable attachments? (b) What is the
direction and magnitude of the force the hinges exert on the
bridge under these circumstances? The mass of the bridge is
2500 kg.

Figure 9.35 A small drawbridge, showing the forces on the hinges ( F ),

its weight ( w ), and the tension in its wires ( T ).

13. Suppose a 900-kg car is on the bridge in Figure 9.35 with
its center of mass halfway between the hinges and the cable
attachments. (The bridge is supported by the cables and
hinges only.) (a) Find the force in the cables. (b) Find the
direction and magnitude of the force exerted by the hinges on
the bridge.

14. A sandwich board advertising sign is constructed as
shown in Figure 9.36. The sign's mass is 8.00 kg. (a)
Calculate the tension in the chain assuming no friction
between the legs and the sidewalk. (b) What force is exerted
by each side on the hinge?

Figure 9.36 A sandwich board advertising sign demonstrates tension.

15. (a) What minimum coefficient of friction is needed
between the legs and the ground to keep the sign in Figure
9.36 in the position shown if the chain breaks? (b) What force
is exerted by each side on the hinge?

16. A gymnast is attempting to perform splits. From the
information given in Figure 9.37, calculate the magnitude and
direction of the force exerted on each foot by the floor.

Figure 9.37 A gymnast performs full split. The center of gravity and the
various distances from it are shown.

9.4 Applications of Statics, Including Problem-
Solving Strategies
17. To get up on the roof, a person (mass 70.0 kg) places a
6.00-m aluminum ladder (mass 10.0 kg) against the house on
a concrete pad with the base of the ladder 2.00 m from the
house. The ladder rests against a plastic rain gutter, which we
can assume to be frictionless. The center of mass of the
ladder is 2 m from the bottom. The person is standing 3 m
from the bottom. What are the magnitudes of the forces on
the ladder at the top and bottom?

18. In Figure 9.22, the cg of the pole held by the pole vaulter
is 2.00 m from the left hand, and the hands are 0.700 m
apart. Calculate the force exerted by (a) his right hand and (b)
his left hand. (c) If each hand supports half the weight of the
pole in Figure 9.20, show that the second condition for
equilibrium (net τ = 0) is satisfied for a pivot other than the

one located at the center of gravity of the pole. Explicitly show
how you follow the steps in the Problem-Solving Strategy for
static equilibrium described above.

9.5 Simple Machines
19. What is the mechanical advantage of a nail puller—similar
to the one shown in Figure 9.24 —where you exert a force
45 cm from the pivot and the nail is 1.8 cm on the other
side? What minimum force must you exert to apply a force of
1250 N to the nail?

20. Suppose you needed to raise a 250-kg mower a distance
of 6.0 cm above the ground to change a tire. If you had a
2.0-m long lever, where would you place the fulcrum if your
force was limited to 300 N?

21. a) What is the mechanical advantage of a wheelbarrow,
such as the one in Figure 9.25, if the center of gravity of the
wheelbarrow and its load has a perpendicular lever arm of
5.50 cm, while the hands have a perpendicular lever arm of
1.02 m? (b) What upward force should you exert to support
the wheelbarrow and its load if their combined mass is 55.0
kg? (c) What force does the wheel exert on the ground?

22. A typical car has an axle with 1.10 cm radius driving a

tire with a radius of 27.5 cm . What is its mechanical
advantage assuming the very simplified model in Figure
9.26(b)?
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23. What force does the nail puller in Exercise 9.19 exert on
the supporting surface? The nail puller has a mass of 2.10 kg.

24. If you used an ideal pulley of the type shown in Figure
9.27(a) to support a car engine of mass 115 kg , (a) What

would be the tension in the rope? (b) What force must the
ceiling supply, assuming you pull straight down on the rope?
Neglect the pulley system's mass.

25. Repeat Exercise 9.24 for the pulley shown in Figure
9.27(c), assuming you pull straight up on the rope. The pulley
system's mass is 7.00 kg .

9.6 Forces and Torques in Muscles and Joints
26. Verify that the force in the elbow joint in Example 9.4 is
407 N, as stated in the text.

27. Two muscles in the back of the leg pull on the Achilles
tendon as shown in Figure 9.38. What total force do they
exert?

Figure 9.38 The Achilles tendon of the posterior leg serves to attach
plantaris, gastrocnemius, and soleus muscles to calcaneus bone.

28. The upper leg muscle (quadriceps) exerts a force of 1250
N, which is carried by a tendon over the kneecap (the patella)
at the angles shown in Figure 9.39. Find the direction and
magnitude of the force exerted by the kneecap on the upper
leg bone (the femur).

Figure 9.39 The knee joint works like a hinge to bend and straighten the
lower leg. It permits a person to sit, stand, and pivot.

29. A device for exercising the upper leg muscle is shown in
Figure 9.40, together with a schematic representation of an
equivalent lever system. Calculate the force exerted by the
upper leg muscle to lift the mass at a constant speed.
Explicitly show how you follow the steps in the Problem-
Solving Strategy for static equilibrium in Applications of
Statistics, Including Problem-Solving Strategies.

Figure 9.40 A mass is connected by pulleys and wires to the ankle in
this exercise device.

Chapter 9 | Statics and Torque 389



30. A person working at a drafting board may hold her head
as shown in Figure 9.41, requiring muscle action to support
the head. The three major acting forces are shown. Calculate
the direction and magnitude of the force supplied by the
upper vertebrae FV to hold the head stationary, assuming

that this force acts along a line through the center of mass as
do the weight and muscle force.

Figure 9.41

31. We analyzed the biceps muscle example with the angle
between forearm and upper arm set at 90º . Using the same
numbers as in Example 9.4, find the force exerted by the
biceps muscle when the angle is 120º and the forearm is in
a downward position.

32. Even when the head is held erect, as in Figure 9.42, its
center of mass is not directly over the principal point of
support (the atlanto-occipital joint). The muscles at the back
of the neck should therefore exert a force to keep the head
erect. That is why your head falls forward when you fall
asleep in the class. (a) Calculate the force exerted by these
muscles using the information in the figure. (b) What is the
force exerted by the pivot on the head?

Figure 9.42 The center of mass of the head lies in front of its major point
of support, requiring muscle action to hold the head erect. A simplified
lever system is shown.

33. A 75-kg man stands on his toes by exerting an upward
force through the Achilles tendon, as in Figure 9.43. (a) What
is the force in the Achilles tendon if he stands on one foot? (b)
Calculate the force at the pivot of the simplified lever system
shown—that force is representative of forces in the ankle
joint.

Figure 9.43 The muscles in the back of the leg pull the Achilles tendon
when one stands on one's toes. A simplified lever system is shown.

34. A father lifts his child as shown in Figure 9.44. What force
should the upper leg muscle exert to lift the child at a constant
speed?

Figure 9.44 A child being lifted by a father's lower leg.
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35. Unlike most of the other muscles in our bodies, the
masseter muscle in the jaw, as illustrated in Figure 9.45, is
attached relatively far from the joint, enabling large forces to
be exerted by the back teeth. (a) Using the information in the
figure, calculate the force exerted by the lower teeth on the
bullet. (b) Calculate the force on the joint.

Figure 9.45 A person clenching a bullet between his teeth.

36. Integrated Concepts

Suppose we replace the 4.0-kg book in Exercise 9.31 of the
biceps muscle with an elastic exercise rope that obeys
Hooke's Law. Assume its force constant k = 600 N/m . (a)
How much is the rope stretched (past equilibrium) to provide
the same force FB as in this example? Assume the rope is

held in the hand at the same location as the book. (b) What
force is on the biceps muscle if the exercise rope is pulled
straight up so that the forearm makes an angle of 25º with
the horizontal? Assume the biceps muscle is still
perpendicular to the forearm.

37. (a) What force should the woman in Figure 9.46 exert on
the floor with each hand to do a push-up? Assume that she
moves up at a constant speed. (b) The triceps muscle at the
back of her upper arm has an effective lever arm of 1.75 cm,
and she exerts force on the floor at a horizontal distance of
20.0 cm from the elbow joint. Calculate the magnitude of the
force in each triceps muscle, and compare it to her weight. (c)
How much work does she do if her center of mass rises 0.240
m? (d) What is her useful power output if she does 25
pushups in one minute?

Figure 9.46 A woman doing pushups.

38. You have just planted a sturdy 2-m-tall palm tree in your
front lawn for your mother's birthday. Your brother kicks a 500
g ball, which hits the top of the tree at a speed of 5 m/s and
stays in contact with it for 10 ms. The ball falls to the ground
near the base of the tree and the recoil of the tree is minimal.
(a) What is the force on the tree? (b) The length of the sturdy
section of the root is only 20 cm. Furthermore, the soil around
the roots is loose and we can assume that an effective force
is applied at the tip of the 20 cm length. What is the effective
force exerted by the end of the tip of the root to keep the tree
from toppling? Assume the tree will be uprooted rather than
bend. (c) What could you have done to ensure that the tree
does not uproot easily?

39. Unreasonable Results

Suppose two children are using a uniform seesaw that is 3.00
m long and has its center of mass over the pivot. The first
child has a mass of 30.0 kg and sits 1.40 m from the pivot. (a)
Calculate where the second 18.0 kg child must sit to balance
the seesaw. (b) What is unreasonable about the result? (c)
Which premise is unreasonable, or which premises are
inconsistent?

40. Construct Your Own Problem

Consider a method for measuring the mass of a person's arm
in anatomical studies. The subject lies on her back, extends
her relaxed arm to the side and two scales are placed below
the arm. One is placed under the elbow and the other under
the back of her hand. Construct a problem in which you
calculate the mass of the arm and find its center of mass
based on the scale readings and the distances of the scales
from the shoulder joint. You must include a free body diagram
of the arm to direct the analysis. Consider changing the
position of the scale under the hand to provide more
information, if needed. You may wish to consult references to
obtain reasonable mass values.

Test Prep for AP® Courses

9.2 The Second Condition for Equilibrium
1. Which of the following is not an example of an object

undergoing a torque?
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a. A car is rounding a bend at a constant speed.
b. A merry-go-round increases from rest to a constant

rotational speed.
c. A pendulum swings back and forth.
d. A bowling ball rolls down a bowling alley.

2. Five forces of equal magnitude, labeled A–E, are applied to
the object shown below. If the object is anchored at point P,
which force will provide the greatest torque?

Figure 9.47 Five forces acting on an object.
a. Force A
b. Force B
c. Force C
d. Force D
e. Force E

9.3 Stability
3. Using the concept of torque, explain why a traffic cone
placed on its base is in stable equilibrium, while a traffic cone
placed on its tip is in unstable equilibrium.

9.4 Applications of Statics, Including Problem-
Solving Strategies
4. A child sits on the end of a playground see-saw. Which of
the following values is the most appropriate estimate of the
torque created by the child?

a. 6 N•m
b. 60 N•m
c. 600 N•m
d. 6000 N•m

5. A group of students is stacking a set of identical books,
each one overhanging the one below it by 1 inch. They would
like to estimate how many books they could place on top of
each other before the stack tipped. What information below
would they need to know to make this calculation?

Figure 9.48 3 overlapping stacked books.
I. The mass of each book
II. The width of each book
III. The depth of each book

a. I only
b. I and II only
c. I and III only
d. II only
e. I, II, and III

6. A 10 N board of uniform density is 5 meters long. It is
supported on the left by a string bearing a 3 N upward force.
In order to prevent the string from breaking, a person must
place an upward force of 7 N at a position along the bottom
surface of the board. At what distance from its left edge would
they need to place this force in order for the board to be in
static equilibrium?

a. 3
7 m

b. 5
2 m

c. 25
7 m

d. 30
7 m

e. 5 m

7. A bridge is supported by two piers located 20 meters apart.
Both the left and right piers provide an upward force on the
bridge, labeled FL and FR respectively.

a. If a 1000 kg car comes to rest at a point 5 meters from
the left pier, how much force will the bridge provide to
the left and right piers?

b. How will FL and FR change as the car drives to the right
side of the bridge?

8. An object of unknown mass is provided to a student.
Without using a scale, design an experimental procedure
detailing how the magnitude of this mass could be
experimentally found. Your explanation must include the
concept of torque and all steps should be provided in an
orderly sequence. You may include a labeled diagram of your
setup to help in your description. Include enough detail so
that another student could carry out your procedure.

9.5 Simple Machines
9. As a young student, you likely learned that simple
machines are capable of increasing the ability to lift and move
objects. Now, as an educated AP Physics student, you are
aware that this capability is governed by the relationship
between force and torque.

In the space below, explain why torque is integral to the
increase in force created by a simple machine. You may use
an example or diagram to assist in your explanation. Be sure
to cite the mechanical advantage in your explanation as well.

10. Figure 9.24(a) shows a wheelbarrow being lifted by an
applied force Fi. If the wheelbarrow is filled with twenty bricks
massing 3 kg each, estimate the value of the applied force Fi.
Provide an explanation behind the total weight w and any
reasoning toward your final answer. Additionally, provide a
range of values over which you feel the force could exist.

9.6 Forces and Torques in Muscles and Joints
11. When you use your hand to raise a 20 lb dumbbell in a
curling motion, the force on your bicep muscle is not equal to
20 lb.
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a. Compare the size of the force placed on your bicep
muscle to the force of the 20 lb dumbbell lifted by your
hand. Using the concept of torque, which force is
greater and explain why the two forces are not identical.

b. Does the force placed on your bicep muscle change as
you curl the weight closer toward your body? (In other
words, is the force on your muscle different when your
forearm is 90° to your upper arm than when it is 45° to
your upper arm?) Explain your answer using torque.
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