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Figure 19.1 Automated external defibrillator unit (AED) (credit: U.S. Defense Department photo/Tech. Sgt. Suzanne M. Day)
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Connection for AP® Courses
In Electric Charge and Electric Field, we just scratched the surface (or at least rubbed it) of electrical phenomena. Two of the
most familiar aspects of electricity are its energy and voltage. We know, for example, that great amounts of electrical energy can
be stored in batteries, are transmitted cross-country through power lines, and may jump from clouds to explode the sap of trees.
In a similar manner, at molecular levels, ions cross cell membranes and transfer information. We also know about voltages
associated with electricity. Batteries are typically a few volts, the outlets in your home produce 120 volts, and power lines can be
as high as hundreds of thousands of volts. But energy and voltage are not the same thing. A motorcycle battery, for example, is
small and would not be very successful in replacing the much larger battery in a car, yet each has the same voltage. In this
chapter, we shall examine the relationship between voltage and electrical energy and begin to explore some of the many
applications of electricity. We do so by introducing the concept of electric potential and describing the relationship between
electric field and electric potential.

This chapter presents the concept of equipotential lines (lines of equal potential) as a way to visualize the electric field (Enduring
Understanding 2.E, Essential Knowledge 2.E.2). An analogy between the isolines on topographic maps for gravitational field and
equipotential lines for the electric field is used to develop a conceptual understanding of equipotential lines (Essential Knowledge
2.E.1). The relationship between the magnitude of an electric field, change in electric potential, and displacement is stated for a
uniform field and extended for the more general case using the concept of the “average value” of the electric field (Essential
Knowledge 2.E.3).
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The concept that an electric field is caused by charged objects (Enduring Understanding 2.C) supports Big Idea 2, that fields
exist in space and can be used to explain interactions. The relationship between the electric field, electric charge, and electric
force (Essential Knowledge 2.C.1) is used to describe the behavior of charged particles. The uniformity of the electric field
between two oppositely charged parallel plates with uniformly distributed electric charge (Essential Knowledge 2.C.5), as well as
the properties of materials and their geometry, are used to develop understanding of the capacitance of a capacitor (Essential
Knowledge 4.E.4).

This chapter also supports Big Idea 4, that interactions between systems result in changes in those systems. This idea is applied
to electric properties of various systems of charged objects, demonstrating the effect of electric interactions on electric properties
of systems (Enduring Understanding 4.E). This fact in turn supports Big Idea 5, that changes due to interactions are governed by
conservation laws. In particular, the energy of a system is conserved (Enduring Understanding 5.B). Any system that has internal
structure can have internal energy. For a system of charged objects, internal energy can change as a result of changes in the
arrangement of charges and their geometric configuration as long as work is done on, or by, the system (Essential Knowledge
5.B.2). When objects within the system interact with conservative forces, such as electric forces, the internal energy is defined by
the potential energy of that interaction (Essential Knowledge 5.B.3). In general, the internal energy of a system is the sum of the
kinetic energies of all its objects and the potential energy of interaction between the objects within the system (Essential
Knowledge 5.B.4).

The concepts in this chapter support:

Big Idea 1 Objects and systems have properties such as mass and charge. Systems may have internal structure.

Enduring Understanding 1.E Materials have many macroscopic properties that result from the arrangement and interactions of
the atoms and molecules that make up the material.

Essential Knowledge 1.E.4 Matter has a property called electric permittivity.

Big Idea 2 Fields existing in space can be used to explain interactions.

Enduring Understanding 2.C An electric field is caused by an object with electric charge.

Essential Knowledge 2.C.1 The magnitude of the electric force F exerted on an object with electric charge q by an electric field
F= qE. The direction of the force is determined by the direction of the field and the sign of the charge, with positively charged
objects accelerating in the direction of the field and negatively charged objects accelerating in the direction opposite the field.
This should include a vector field map for positive point charges, negative point charges, spherically symmetric charge
distribution, and uniformly charged parallel plates.

Essential Knowledge 2.C.5 Between two oppositely charged parallel plates with uniformly distributed electric charge, at points far
from the edges of the plates, the electric field is perpendicular to the plates and is constant in both magnitude and direction.

Enduring Understanding 2.E Physicists often construct a map of isolines connecting points of equal value for some quantity
related to a field and use these maps to help visualize the field.

Essential Knowledge 2.E.1 Isolines on a topographic (elevation) map describe lines of approximately equal gravitational potential
energy per unit mass (gravitational equipotential). As the distance between two different isolines decreases, the steepness of the
surface increases. [Contour lines on topographic maps are useful teaching tools for introducing the concept of equipotential lines.
Students are encouraged to use the analogy in their answers when explaining gravitational and electrical potential and potential
differences.]

Essential Knowledge 2.E.2 Isolines in a region where an electric field exists represent lines of equal electric potential, referred to
as equipotential lines.

Essential Knowledge 2.E.3 The average value of the electric field in a region equals the change in electric potential across that
region divided by the change in position (displacement) in the relevant direction.

Big Idea 4 Interactions between systems can result in changes in those systems.

Enduring Understanding 4.E The electric and magnetic properties of a system can change in response to the presence of, or
changes in, other objects or systems.

Essential Knowledge 4.E.4 The resistance of a resistor, and the capacitance of a capacitor, can be understood from the basic
properties of electric fields and forces, as well as the properties of materials and their geometry.

Big Idea 5 Changes that occur as a result of interactions are constrained by conservation laws.

Enduring Understanding 5.B The energy of a system is conserved.

Essential Knowledge 5.B.2 A system with internal structure can have internal energy, and changes in a system’s internal
structure can result in changes in internal energy. [Physics 1: includes mass–spring oscillators and simple pendulums. Physics 2:
charged object in electric fields and examining changes in internal energy with changes in configuration.]

Essential Knowledge 5.B.3 A system with internal structure can have potential energy. Potential energy exists within a system if
the objects within that system interact with conservative forces.

Essential Knowledge 5.B.4 The internal energy of a system includes the kinetic energy of the objects that make up the system
and the potential energy of the configuration of the objects that make up the system.
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19.1 Electric Potential Energy: Potential Difference

Learning Objectives
By the end of this section you will be able to:

• Define electric potential and electric potential energy.
• Describe the relationship between potential difference and electrical potential energy.
• Explain electron volt and its usage in submicroscopic processes.
• Determine electric potential energy given potential difference and amount of charge.

The information presented in this section supports the following AP® learning objectives and science practices:

• 2.C.1.1 The student is able to predict the direction and the magnitude of the force exerted on an object with an electric
charge q placed in an electric field E using the mathematical model of the relation between an electric force and an
electric field: F = qE; a vector relation. (S.P. 6.4, 7.2)

• 2.C.1.2 The student is able to calculate any one of the variables—electric force, electric charge, and electric field—at a
point given the values and sign or direction of the other two quantities. (S.P. 2.2)

• 5.B.2.1 The student is able to calculate the expected behavior of a system using the object model (i.e., by ignoring
changes in internal structure) to analyze a situation. Then, when the model fails, the student can justify the use of
conservation of energy principles to calculate the change in internal energy due to changes in internal structure
because the object is actually a system. (S.P. 1.4, 2.1)

• 5.B.3.1 The student is able to describe and make qualitative and/or quantitative predictions about everyday examples
of systems with internal potential energy. (S.P. 2.2, 6.4, 7.2)

• 5.B.3.2 The student is able to make quantitative calculations of the internal potential energy of a system from a
description or diagram of that system. (S.P. 1.4, 2.2)

• 5.B.3.3 The student is able to apply mathematical reasoning to create a description of the internal potential energy of a
system from a description or diagram of the objects and interactions in that system. (S.P. 1.4, 2.2)

• 5.B.4.1 The student is able to describe and make predictions about the internal energy of systems. (S.P. 6.4, 7.2)
• 5.B.4.2 The student is able to calculate changes in kinetic energy and potential energy of a system, using information

from representations of that system. (S.P. 1.4, 2.1, 2.2)

When a free positive charge q is accelerated by an electric field, such as shown in Figure 19.2, it is given kinetic energy. The

process is analogous to an object being accelerated by a gravitational field. It is as if the charge is going down an electrical hill
where its electric potential energy is converted to kinetic energy. Let us explore the work done on a charge q by the electric field

in this process, so that we may develop a definition of electric potential energy.

Figure 19.2 A charge accelerated by an electric field is analogous to a mass going down a hill. In both cases potential energy is converted to another
form. Work is done by a force, but since this force is conservative, we can write W = –ΔPE .

The electrostatic or Coulomb force is conservative, which means that the work done on q is independent of the path taken. This

is exactly analogous to the gravitational force in the absence of dissipative forces such as friction. When a force is conservative,
it is possible to define a potential energy associated with the force, and it is usually easier to deal with the potential energy
(because it depends only on position) than to calculate the work directly.

We use the letters PE to denote electric potential energy, which has units of joules (J). The change in potential energy, ΔPE , is

crucial, since the work done by a conservative force is the negative of the change in potential energy; that is, W = –ΔPE . For

example, work W done to accelerate a positive charge from rest is positive and results from a loss in PE, or a negative ΔPE .

There must be a minus sign in front of ΔPE to make W positive. PE can be found at any point by taking one point as a
reference and calculating the work needed to move a charge to the other point.
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Potential Energy

W = –ΔPE . For example, work W done to accelerate a positive charge from rest is positive and results from a loss in

PE, or a negative ΔPE. There must be a minus sign in front of ΔPE to make W positive. PE can be found at any point
by taking one point as a reference and calculating the work needed to move a charge to the other point.

Gravitational potential energy and electric potential energy are quite analogous. Potential energy accounts for work done by a
conservative force and gives added insight regarding energy and energy transformation without the necessity of dealing with the
force directly. It is much more common, for example, to use the concept of voltage (related to electric potential energy) than to
deal with the Coulomb force directly.

Calculating the work directly is generally difficult, since W = Fd cos θ and the direction and magnitude of F can be complex

for multiple charges, for odd-shaped objects, and along arbitrary paths. But we do know that, since F = qE , the work, and

hence ΔPE , is proportional to the test charge q. To have a physical quantity that is independent of test charge, we define

electric potential V (or simply potential, since electric is understood) to be the potential energy per unit charge:

(19.1)V = PE
q .

Electric Potential

This is the electric potential energy per unit charge.

(19.2)V = PE
q

Since PE is proportional to q , the dependence on q cancels. Thus V does not depend on q . The change in potential energy

ΔPE is crucial, and so we are concerned with the difference in potential or potential difference ΔV between two points, where

(19.3)ΔV = VB − VA = ΔPE
q .

The potential difference between points A and B, VB – VA , is thus defined to be the change in potential energy of a charge

q moved from A to B, divided by the charge. Units of potential difference are joules per coulomb, given the name volt (V) after

Alessandro Volta.

(19.4)1 V = 1 J
C

Potential Difference

The potential difference between points A and B, VB - VA , is defined to be the change in potential energy of a charge q
moved from A to B, divided by the charge. Units of potential difference are joules per coulomb, given the name volt (V) after
Alessandro Volta.

(19.5)1 V = 1 J
C

The familiar term voltage is the common name for potential difference. Keep in mind that whenever a voltage is quoted, it is
understood to be the potential difference between two points. For example, every battery has two terminals, and its voltage is the
potential difference between them. More fundamentally, the point you choose to be zero volts is arbitrary. This is analogous to
the fact that gravitational potential energy has an arbitrary zero, such as sea level or perhaps a lecture hall floor.

In summary, the relationship between potential difference (or voltage) and electrical potential energy is given by

(19.6)ΔV = ΔPE
q and ΔPE = qΔV .

Potential Difference and Electrical Potential Energy

The relationship between potential difference (or voltage) and electrical potential energy is given by

(19.7)ΔV = ΔPE
q and ΔPE = qΔV .

The second equation is equivalent to the first.

Real World Connections: Electric Potential in Electronic Devices

You probably use devices with stored electric potential daily. Do you own or use any electronic devices that do not have to
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be attached to a wall socket? What happens if you use these items long enough? Do they cease functioning? What do you
do in that case? Choose one of these types of electronic devices and determine how much electric potential (measured in
volts) the item requires for proper functioning. Then estimate the amount of time between replenishments of potential.
Describe how the time between replenishments of potential depends on use.

Answer

Ready examples include calculators and cell phones. The former will either be solar powered, or have replaceable
batteries, probably four 1.5 V for a total of 6 V. The latter will need to be recharged with a specialized charger, which
probably puts out 5 V. Times will be highly dependent on which item is used, but should be less with more intense use.

Voltage is not the same as energy. Voltage is the energy per unit charge. Thus a motorcycle battery and a car battery can both
have the same voltage (more precisely, the same potential difference between battery terminals), yet one stores much more
energy than the other since ΔPE = qΔV . The car battery can move more charge than the motorcycle battery, although both

are 12 V batteries.

Example 19.1 Calculating Energy

Suppose you have a 12.0 V motorcycle battery that can move 5000 C of charge, and a 12.0 V car battery that can move
60,000 C of charge. How much energy does each deliver? (Assume that the numerical value of each charge is accurate to
three significant figures.)

Strategy

To say we have a 12.0 V battery means that its terminals have a 12.0 V potential difference. When such a battery moves
charge, it puts the charge through a potential difference of 12.0 V, and the charge is given a change in potential energy
equal to ΔPE = qΔV .

So to find the energy output, we multiply the charge moved by the potential difference.

Solution

For the motorcycle battery, q = 5000 C and ΔV = 12.0 V . The total energy delivered by the motorcycle battery is

(19.8)ΔPEcycle = (5000 C)(12.0 V)
= (5000 C)(12.0 J/C)
= 6.00×104 J.

Similarly, for the car battery, q = 60,000 C and

(19.9)ΔPEcar = (60,000 C)(12.0 V)

= 7.20×105 J.
Discussion

While voltage and energy are related, they are not the same thing. The voltages of the batteries are identical, but the energy
supplied by each is quite different. Note also that as a battery is discharged, some of its energy is used internally and its
terminal voltage drops, such as when headlights dim because of a low car battery. The energy supplied by the battery is still
calculated as in this example, but not all of the energy is available for external use.

Note that the energies calculated in the previous example are absolute values. The change in potential energy for the battery is
negative, since it loses energy. These batteries, like many electrical systems, actually move negative charge—electrons in
particular. The batteries repel electrons from their negative terminals (A) through whatever circuitry is involved and attract them
to their positive terminals (B) as shown in Figure 19.3. The change in potential is ΔV = VB –VA = +12 V and the charge q
is negative, so that ΔPE = qΔV is negative, meaning the potential energy of the battery has decreased when q has moved

from A to B.
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Figure 19.3 A battery moves negative charge from its negative terminal through a headlight to its positive terminal. Appropriate combinations of
chemicals in the battery separate charges so that the negative terminal has an excess of negative charge, which is repelled by it and attracted to the
excess positive charge on the other terminal. In terms of potential, the positive terminal is at a higher voltage than the negative. Inside the battery, both
positive and negative charges move.

Making Connections: Potential Energy in a Battery

The previous example stated that the potential energy of a battery decreased with each electron it pushed out. However,
shouldn’t this reduced internal energy reduce the potential, as well? Yes, it should. So why don’t we notice this?

Part of the answer is that the amount of energy taken by any one electron is extremely small, and therefore it doesn’t reduce
the potential much. But the main reason is that the energy is stored in the battery as a chemical reaction waiting to happen,
not as electric potential. This reaction only runs when a load is attached to both terminals of the battery. Any one set of
chemical reactants has a certain maximum potential that it can provide; this is why larger batteries consist of cells attached
in series, so that the overall potential increases additively. As these reactants get used up, each cell gives less potential to
the electrons it is moving; eventually this potential falls below a useful threshold. Then the battery either needs to be
charged, which reverses the chemical reaction and reconstitutes the original reactants; or changed.

Example 19.2 How Many Electrons Move through a Headlight Each Second?

When a 12.0 V car battery runs a single 30.0 W headlight, how many electrons pass through it each second?

Strategy

To find the number of electrons, we must first find the charge that moved in 1.00 s. The charge moved is related to voltage
and energy through the equation ΔPE = qΔV . A 30.0 W lamp uses 30.0 joules per second. Since the battery loses

energy, we have ΔPE = –30.0 J and, since the electrons are going from the negative terminal to the positive, we see that

ΔV = +12.0 V .

Solution

To find the charge q moved, we solve the equation ΔPE = qΔV :

(19.10)q = ΔPE
ΔV .

Entering the values for ΔPE and ΔV , we get

(19.11)q = –30.0 J
+12.0 V = –30.0 J

+12.0 J/C = –2.50 C.

The number of electrons ne is the total charge divided by the charge per electron. That is,

(19.12)ne = –2.50 C
–1.60×10–19 C/e– = 1.56×1019 electrons.

Discussion

This is a very large number. It is no wonder that we do not ordinarily observe individual electrons with so many being present
in ordinary systems. In fact, electricity had been in use for many decades before it was determined that the moving charges
in many circumstances were negative. Positive charge moving in the opposite direction of negative charge often produces
identical effects; this makes it difficult to determine which is moving or whether both are moving.
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Applying the Science Practices: Work and Potential Energy in Point Charges

Consider a system consisting of two positive point charges, each 2.0 µC, placed 1.0 m away from each other. We can
calculate the potential (i.e. internal) energy of this configuration by computing the potential due to one of the charges, and
then calculating the potential energy of the second charge in the potential of the first. Applying Equations (19.38) and (19.2)
gives us a potential energy of 3.6×10-2 J. If we move the charges closer to each other, say, to 0.50 m apart, the potential
energy doubles. Note that, to create this second case, some outside force would have had to do work on this system to
change the configuration, and hence it was not a closed system. However, because the electric force is conservative, we
can use the work-energy theorem to state that, since there was no change in kinetic energy, all of the work done went into
increasing the internal energy of the system. Also note that if the point charges had different signs they would be attracted to
each other, so they would be capable of doing work on an outside system when the distance between them decreased. As
work is done on the outside system, the internal energy in the two-charge system decreases.

Figure 19.4 Work is done by moving two charges with the same sign closer to each other, increasing the internal energy of the two-charge
system.

The Electron Volt
The energy per electron is very small in macroscopic situations like that in the previous example—a tiny fraction of a joule. But
on a submicroscopic scale, such energy per particle (electron, proton, or ion) can be of great importance. For example, even a
tiny fraction of a joule can be great enough for these particles to destroy organic molecules and harm living tissue. The particle
may do its damage by direct collision, or it may create harmful x rays, which can also inflict damage. It is useful to have an
energy unit related to submicroscopic effects. Figure 19.5 shows a situation related to the definition of such an energy unit. An
electron is accelerated between two charged metal plates as it might be in an old-model television tube or oscilloscope. The
electron is given kinetic energy that is later converted to another form—light in the television tube, for example. (Note that
downhill for the electron is uphill for a positive charge.) Since energy is related to voltage by ΔPE = qΔV , we can think of the

joule as a coulomb-volt.

Chapter 19 | Electric Potential and Electric Field 837



Figure 19.5 A typical electron gun accelerates electrons using a potential difference between two metal plates. The energy of the electron in electron
volts is numerically the same as the voltage between the plates. For example, a 5000 V potential difference produces 5000 eV electrons.

On the submicroscopic scale, it is more convenient to define an energy unit called the electron volt (eV), which is the energy
given to a fundamental charge accelerated through a potential difference of 1 V. In equation form,

(19.13)1 eV = ⎛
⎝1.60×10–19 C⎞

⎠(1 V) = ⎛
⎝1.60×10–19 C⎞

⎠(1 J/C)

= 1.60×10–19 J.
Electron Volt

On the submicroscopic scale, it is more convenient to define an energy unit called the electron volt (eV), which is the energy
given to a fundamental charge accelerated through a potential difference of 1 V. In equation form,

(19.14)1 eV = ⎛
⎝1.60×10–19 C⎞

⎠(1 V) = ⎛
⎝1.60×10–19 C⎞

⎠(1 J/C)

= 1.60×10–19 J.

An electron accelerated through a potential difference of 1 V is given an energy of 1 eV. It follows that an electron accelerated
through 50 V is given 50 eV. A potential difference of 100,000 V (100 kV) will give an electron an energy of 100,000 eV (100
keV), and so on. Similarly, an ion with a double positive charge accelerated through 100 V will be given 200 eV of energy. These
simple relationships between accelerating voltage and particle charges make the electron volt a simple and convenient energy
unit in such circumstances.

Connections: Energy Units

The electron volt (eV) is the most common energy unit for submicroscopic processes. This will be particularly noticeable in
the chapters on modern physics. Energy is so important to so many subjects that there is a tendency to define a special
energy unit for each major topic. There are, for example, calories for food energy, kilowatt-hours for electrical energy, and
therms for natural gas energy.

The electron volt is commonly employed in submicroscopic processes—chemical valence energies and molecular and nuclear
binding energies are among the quantities often expressed in electron volts. For example, about 5 eV of energy is required to
break up certain organic molecules. If a proton is accelerated from rest through a potential difference of 30 kV, it is given an
energy of 30 keV (30,000 eV) and it can break up as many as 6000 of these molecules (
30,000 eV ÷ 5 eV per molecule = 6000 molecules ). Nuclear decay energies are on the order of 1 MeV (1,000,000 eV) per

event and can, thus, produce significant biological damage.

Conservation of Energy
The total energy of a system is conserved if there is no net addition (or subtraction) of work or heat transfer. For conservative
forces, such as the electrostatic force, conservation of energy states that mechanical energy is a constant.

Mechanical energy is the sum of the kinetic energy and potential energy of a system; that is, KE + PE = constant . A loss of
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PE of a charged particle becomes an increase in its KE. Here PE is the electric potential energy. Conservation of energy is stated
in equation form as

(19.15)KE + PE = constant
or

(19.16)KEi + PEi= KEf + PEf ,

where i and f stand for initial and final conditions. As we have found many times before, considering energy can give us insights
and facilitate problem solving.

Example 19.3 Electrical Potential Energy Converted to Kinetic Energy

Calculate the final speed of a free electron accelerated from rest through a potential difference of 100 V. (Assume that this
numerical value is accurate to three significant figures.)

Strategy

We have a system with only conservative forces. Assuming the electron is accelerated in a vacuum, and neglecting the
gravitational force (we will check on this assumption later), all of the electrical potential energy is converted into kinetic

energy. We can identify the initial and final forms of energy to be KEi = 0, KEf = ½mv2, PEi = qV , and PEf = 0.

Solution

Conservation of energy states that

(19.17)KEi + PEi= KEf + PEf.

Entering the forms identified above, we obtain

(19.18)
qV = mv2

2 .

We solve this for v :

(19.19)
v = 2qV

m .

Entering values for q, V , and m gives

(19.20)

v =
2⎛

⎝–1.60×10–19 C⎞
⎠(–100 J/C)

9.11×10–31 kg

= 5.93×106 m/s.
Discussion

Note that both the charge and the initial voltage are negative, as in Figure 19.5. From the discussions in Electric Charge
and Electric Field, we know that electrostatic forces on small particles are generally very large compared with the
gravitational force. The large final speed confirms that the gravitational force is indeed negligible here. The large speed also
indicates how easy it is to accelerate electrons with small voltages because of their very small mass. Voltages much higher
than the 100 V in this problem are typically used in electron guns. Those higher voltages produce electron speeds so great
that relativistic effects must be taken into account. That is why a low voltage is considered (accurately) in this example.

Making Connections: Kinetic and Potential Energy in Point Charges

Now consider another system of two point charges. One has a mass of 1000 kg and a charge of 50.0 µC, and is initially
stationary. The other has a mass of 1.00 kg, a charge of 10.0 µC, and is initially traveling directly at the first point charge at
10.0 m/s from very far away. What will be the closest approach of these two objects to each other?
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Figure 19.6 A system consisting of two point charges initially has the smaller charge moving toward the larger charge

Note that the internal energy of this two-charge system will not change, due to an absence of external forces acting on the
system. Initially, the internal energy is equal to the kinetic energy of the smaller charge, and the potential energy is
effectively zero due to the enormous distance between the two objects. Conservation of energy tells us that the internal
energy of this system will not change. Hence the distance of closest approach will be when the internal energy is equal to
the potential energy between the two charges, and there is no kinetic energy in this system.

The initial kinetic energy may be calculated as 50.0 J. Applying Equations (19.38) and (19.2), we find a distance of 9.00 cm.
After this, the mutual repulsion will send the lighter object off to infinity again. Note that we did not include potential energy
due to gravity, as the masses concerned are so small compared to the charges that the result will never come close to
showing up in significant digits. Furthermore, the first object is much more massive than the second. As a result, any motion
induced in it will also be too small to show up in the significant digits.

19.2 Electric Potential in a Uniform Electric Field

Learning Objectives
By the end of this section, you will be able to:

• Describe the relationship between voltage and electric field.
• Derive an expression for the electric potential and electric field.
• Calculate electric field strength given distance and voltage.

The information presented in this section supports the following AP® learning objectives and science practices:

• 2.C.5.2 The student is able to calculate the magnitude and determine the direction of the electric field between two
electrically charged parallel plates, given the charge of each plate, or the electric potential difference and plate
separation. (S.P. 2.2)

• 2.C.5.3 The student is able to represent the motion of an electrically charged particle in the uniform field between two
oppositely charged plates and express the connection of this motion to projectile motion of an object with mass in the
Earth’s gravitational field. (S.P. 1.1, 2.2, 7.1)

• 2.E.3.1 The student is able to apply mathematical routines to calculate the average value of the magnitude of the
electric field in a region from a description of the electric potential in that region using the displacement along the line
on which the difference in potential is evaluated. (S.P. 2.2)

• 2.E.3.2 The student is able to apply the concept of the isoline representation of electric potential for a given electric
charge distribution to predict the average value of the electric field in the region. (S.P. 1.4, 6.4)

In the previous section, we explored the relationship between voltage and energy. In this section, we will explore the relationship
between voltage and electric field. For example, a uniform electric field E is produced by placing a potential difference (or

voltage) ΔV across two parallel metal plates, labeled A and B. (See Figure 19.7.) Examining this will tell us what voltage is
needed to produce a certain electric field strength; it will also reveal a more fundamental relationship between electric potential
and electric field. From a physicist’s point of view, either ΔV or E can be used to describe any charge distribution. ΔV is

most closely tied to energy, whereas E is most closely related to force. ΔV is a scalar quantity and has no direction, while E
is a vector quantity, having both magnitude and direction. (Note that the magnitude of the electric field strength, a scalar quantity,
is represented by E below.) The relationship between ΔV and E is revealed by calculating the work done by the force in
moving a charge from point A to point B. But, as noted in Electric Potential Energy: Potential Difference, this is complex for
arbitrary charge distributions, requiring calculus. We therefore look at a uniform electric field as an interesting special case.
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Figure 19.7 The relationship between V and E for parallel conducting plates is E = V / d . (Note that ΔV = VAB in magnitude. For a charge

that is moved from plate A at higher potential to plate B at lower potential, a minus sign needs to be included as follows:
–ΔV = VA – VB = VAB . See the text for details.)

The work done by the electric field in Figure 19.7 to move a positive charge q from A, the positive plate, higher potential, to B,

the negative plate, lower potential, is

(19.21)W = –ΔPE = – qΔV .

The potential difference between points A and B is

(19.22)–ΔV = – (VB – VA) = VA – VB = VAB.

Entering this into the expression for work yields

(19.23)W = qVAB.

Work is W = Fd cos θ ; here cos θ = 1 , since the path is parallel to the field, and so W = Fd . Since F = qE , we see that

W = qEd . Substituting this expression for work into the previous equation gives

(19.24)qEd = qVAB.

The charge cancels, and so the voltage between points A and B is seen to be

(19.25)VAB = Ed

E = VAB
d

⎫

⎭
⎬(uniform E - field on y),

where d is the distance from A to B, or the distance between the plates in Figure 19.7. Note that the above equation implies the
units for electric field are volts per meter. We already know the units for electric field are newtons per coulomb; thus the following
relation among units is valid:

(19.26)1 N / C = 1 V / m.
Voltage between Points A and B

(19.27)VAB = Ed

E = VAB
d

⎫

⎭
⎬(uniform E - field on y),

where d is the distance from A to B, or the distance between the plates.
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Example 19.4 What Is the Highest Voltage Possible between Two Plates?

Dry air will support a maximum electric field strength of about 3.0×106 V/m . Above that value, the field creates enough
ionization in the air to make the air a conductor. This allows a discharge or spark that reduces the field. What, then, is the
maximum voltage between two parallel conducting plates separated by 2.5 cm of dry air?

Strategy

We are given the maximum electric field E between the plates and the distance d between them. The equation

VAB = Ed can thus be used to calculate the maximum voltage.

Solution

The potential difference or voltage between the plates is

(19.28)VAB = Ed.

Entering the given values for E and d gives

(19.29)VAB = (3.0×106 V/m)(0.025 m) = 7.5×104 V

or

(19.30)VAB = 75 kV.

(The answer is quoted to only two digits, since the maximum field strength is approximate.)

Discussion

One of the implications of this result is that it takes about 75 kV to make a spark jump across a 2.5 cm (1 in.) gap, or 150 kV
for a 5 cm spark. This limits the voltages that can exist between conductors, perhaps on a power transmission line. A
smaller voltage will cause a spark if there are points on the surface, since points create greater fields than smooth surfaces.
Humid air breaks down at a lower field strength, meaning that a smaller voltage will make a spark jump through humid air.
The largest voltages can be built up, say with static electricity, on dry days.

Figure 19.8 A spark chamber is used to trace the paths of high-energy particles. Ionization created by the particles as they pass through the gas
between the plates allows a spark to jump. The sparks are perpendicular to the plates, following electric field lines between them. The potential
difference between adjacent plates is not high enough to cause sparks without the ionization produced by particles from accelerator experiments (or
cosmic rays). (credit: Daderot, Wikimedia Commons)
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Making Connections: Uniform Fields

Figure 19.9 (a) A massive particle launched horizontally in a downward gravitational field will fall to the ground. (b) A positively charged particle
launched horizontally in a downward electric field will fall toward the negative potential; a negatively charged particle will move in the opposite
direction.

Recall from Projectile Motion (Section 3.4) that a massive projectile launched horizontally (for example, from a cliff) in a
uniform downward gravitational field (as we find near the surface of the Earth) will follow a parabolic trajectory downward
until it hits the ground, as shown in Figure 19.9(a).

An identical outcome occurs for a positively charged particle in a uniform electric field (Figure 19.9(b)); it follows the electric
field “downhill” until it runs into something. The difference between the two cases is that the gravitational force is always
attractive; the electric force has two kinds of charges, and therefore may be either attractive or repulsive. Therefore, a
negatively charged particle launched into the same field will fall “uphill”.

Example 19.5 Field and Force inside an Electron Gun

(a) An electron gun has parallel plates separated by 4.00 cm and gives electrons 25.0 keV of energy. What is the electric
field strength between the plates? (b) What force would this field exert on a piece of plastic with a 0.500 µC charge that

gets between the plates?

Strategy

Since the voltage and plate separation are given, the electric field strength can be calculated directly from the expression

E = VAB
d . Once the electric field strength is known, the force on a charge is found using F = q E . Since the electric field

is in only one direction, we can write this equation in terms of the magnitudes, F = q E .

Solution for (a)

The expression for the magnitude of the electric field between two uniform metal plates is

(19.31)
E = VAB

d .

Since the electron is a single charge and is given 25.0 keV of energy, the potential difference must be 25.0 kV. Entering this
value for VAB and the plate separation of 0.0400 m, we obtain

(19.32)E = 25.0 kV
0.0400 m = 6.25×105 V/m.

Solution for (b)

The magnitude of the force on a charge in an electric field is obtained from the equation
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(19.33)F = qE.

Substituting known values gives

(19.34)F = (0.500×10–6 C)(6.25×105 V/m) = 0.313 N.

Discussion

Note that the units are newtons, since 1 V/m = 1 N/C . The force on the charge is the same no matter where the charge
is located between the plates. This is because the electric field is uniform between the plates.

In more general situations, regardless of whether the electric field is uniform, it points in the direction of decreasing potential,
because the force on a positive charge is in the direction of E and also in the direction of lower potential V . Furthermore, the

magnitude of E equals the rate of decrease of V with distance. The faster V decreases over distance, the greater the electric
field. In equation form, the general relationship between voltage and electric field is

(19.35)E = – ΔV
Δs ,

where Δs is the distance over which the change in potential, ΔV , takes place. The minus sign tells us that E points in the
direction of decreasing potential. The electric field is said to be the gradient (as in grade or slope) of the electric potential.

Relationship between Voltage and Electric Field

In equation form, the general relationship between voltage and electric field is

(19.36)E = – ΔV
Δs ,

where Δs is the distance over which the change in potential, ΔV , takes place. The minus sign tells us that E points in
the direction of decreasing potential. The electric field is said to be the gradient (as in grade or slope) of the electric
potential.

Note that Equation (19.36) is defining the average electric field over the given region.

For continually changing potentials, ΔV and Δs become infinitesimals and differential calculus must be employed to determine
the electric field.

Making Connections: Non-Parallel Conducting Plates

Consider two conducting plates, placed as shown in Figure 19.10. If the plates are held at a fixed potential difference ΔV,
the average electric field is strongest between the near edges of the plates, and weakest between the two far edges of the
plates.
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Figure 19.10 Two nonparallel plates, held at a fixed potential difference.

Now assume that the potential difference is 60 V. If the arc length along the field line labeled by A is 10 cm, what is the
electric field at point A? How about point B, if the arc length along that field line is 17 cm? How would the density of the
electric potential isolines, if they were drawn on the figure, compare at these two points? Can you use this concept to
estimate what the electric field strength would be at a point midway between A and B?

Answer

Applying Equation. 19.36, we find that the electric fields at A and B are 600 V/m and 350 V/m respectively. The isolines
would be denser at A than at B, and would spread out evenly from A to B. Therefore, the electric field at a point halfway
between the two would have an arc length of 13.5 cm and be approximately 440 V/m.

19.3 Electrical Potential Due to a Point Charge

Learning Objectives
By the end of this section, you will be able to:

• Explain point charges and express the equation for electric potential of a point charge.
• Distinguish between electric potential and electric field.
• Determine the electric potential of a point charge given charge and distance.

Point charges, such as electrons, are among the fundamental building blocks of matter. Furthermore, spherical charge
distributions (like on a metal sphere) create external electric fields exactly like a point charge. The electric potential due to a point
charge is, thus, a case we need to consider. Using calculus to find the work needed to move a test charge q from a large

distance away to a distance of r from a point charge Q , and noting the connection between work and potential
⎛
⎝W = – qΔV ⎞

⎠ , it can be shown that the electric potential V of a point charge is

(19.37)V = kQ
r (Point Charge),

where k is a constant equal to 9.0×109 N · m2 /C2 .
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Electric Potential V of a Point Charge

The electric potential V of a point charge is given by

(19.38)V = kQ
r (Point Charge).

The potential at infinity is chosen to be zero. Thus V for a point charge decreases with distance, whereas E for a point charge
decreases with distance squared:

(19.39)E = F
q = kQ

r2 .

Recall that the electric potential V is a scalar and has no direction, whereas the electric field E is a vector. To find the voltage
due to a combination of point charges, you add the individual voltages as numbers. To find the total electric field, you must add
the individual fields as vectors, taking magnitude and direction into account. This is consistent with the fact that V is closely

associated with energy, a scalar, whereas E is closely associated with force, a vector.

Example 19.6 What Voltage Is Produced by a Small Charge on a Metal Sphere?

Charges in static electricity are typically in the nanocoulomb (nC) to microcoulomb ⎛
⎝µC⎞

⎠ range. What is the voltage 5.00

cm away from the center of a 1-cm diameter metal sphere that has a −3.00 nC static charge?

Strategy

As we have discussed in Electric Charge and Electric Field, charge on a metal sphere spreads out uniformly and
produces a field like that of a point charge located at its center. Thus we can find the voltage using the equation V = kQ / r
.

Solution

Entering known values into the expression for the potential of a point charge, we obtain

(19.40)V = kQ
r

= ⎛
⎝8.99×109 N · m2 / C2⎞

⎠
⎛
⎝

–3.00×10–9 C
5.00×10–2 m

⎞
⎠

= –539 V.
Discussion

The negative value for voltage means a positive charge would be attracted from a larger distance, since the potential is
lower (more negative) than at larger distances. Conversely, a negative charge would be repelled, as expected.

Example 19.7 What Is the Excess Charge on a Van de Graaff Generator

A demonstration Van de Graaff generator has a 25.0 cm diameter metal sphere that produces a voltage of 100 kV near its
surface. (See Figure 19.11.) What excess charge resides on the sphere? (Assume that each numerical value here is shown
with three significant figures.)
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Figure 19.11 The voltage of this demonstration Van de Graaff generator is measured between the charged sphere and ground. Earth’s potential
is taken to be zero as a reference. The potential of the charged conducting sphere is the same as that of an equal point charge at its center.

Strategy

The potential on the surface will be the same as that of a point charge at the center of the sphere, 12.5 cm away. (The radius
of the sphere is 12.5 cm.) We can thus determine the excess charge using the equation

(19.41)V = kQ
r .

Solution

Solving for Q and entering known values gives

(19.42)Q = rV
k

=
(0.125 m)⎛

⎝100×103 V⎞
⎠

8.99×109 N · m2 / C2

= 1.39×10–6 C = 1.39 µC.

Discussion

This is a relatively small charge, but it produces a rather large voltage. We have another indication here that it is difficult to
store isolated charges.

The voltages in both of these examples could be measured with a meter that compares the measured potential with ground
potential. Ground potential is often taken to be zero (instead of taking the potential at infinity to be zero). It is the potential
difference between two points that is of importance, and very often there is a tacit assumption that some reference point, such as
Earth or a very distant point, is at zero potential. As noted in Electric Potential Energy: Potential Difference, this is analogous
to taking sea level as h = 0 when considering gravitational potential energy, PEg = mgh .

19.4 Equipotential Lines

Learning Objectives
By the end of this section, you will be able to:

• Explain equipotential lines (also called isolines of electric potential) and equipotential surfaces.
• Describe the action of grounding an electrical appliance.
• Compare electric field and equipotential lines.

The information presented in this section supports the following AP® learning objectives and science practices:

• 2.E.2.1 The student is able to determine the structure of isolines of electric potential by constructing them in a given
electric field. (S.P. 6.4, 7.2)
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• 2.E.2.2 The student is able to predict the structure of isolines of electric potential by constructing them in a given
electric field and make connections between these isolines and those found in a gravitational field. (S.P. 6.4, 7.2)

• 2.E.2.3 The student is able to qualitatively use the concept of isolines to construct isolines of electric potential in an
electric field and determine the effect of that field on electrically charged objects. (S.P. 1.4)

We can represent electric potentials (voltages) pictorially, just as we drew pictures to illustrate electric fields. Of course, the two
are related. Consider Figure 19.12, which shows an isolated positive point charge and its electric field lines. Electric field lines
radiate out from a positive charge and terminate on negative charges. While we use blue arrows to represent the magnitude and
direction of the electric field, we use green lines to represent places where the electric potential is constant. These are called
equipotential lines in two dimensions, or equipotential surfaces in three dimensions. The term equipotential is also used as a
noun, referring to an equipotential line or surface. The potential for a point charge is the same anywhere on an imaginary sphere
of radius r surrounding the charge. This is true since the potential for a point charge is given by V = kQ / r and, thus, has the

same value at any point that is a given distance r from the charge. An equipotential sphere is a circle in the two-dimensional
view of Figure 19.12. Since the electric field lines point radially away from the charge, they are perpendicular to the equipotential
lines.

Figure 19.12 An isolated point charge Q with its electric field lines in blue and equipotential lines in green. The potential is the same along each

equipotential line, meaning that no work is required to move a charge anywhere along one of those lines. Work is needed to move a charge from one
equipotential line to another. Equipotential lines are perpendicular to electric field lines in every case.

Applying the Science Practices: Electric Potential and Peaks

Starting with Figure 19.13 as a rough example, draw diagrams of isolines for both positive and negative isolated point
charges. Be sure to take care with what happens to the spacing of the isolines as you get closer to the charge. Then copy
both of these sets of lines, but relabel them as gravitational equipotential lines. Then try to draw the sort of hill or hole or
other shape that would have equipotential lines of this form. Does this shape exist in nature?
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Figure 19.13 An example of a topographical map.

You should notice that the lines get closer together the closer you get to the point charge. The hill (or sinkhole, for the
equivalent from a negative charge) should have a 1/r sort of form, which is not a very common topographical feature.

It is important to note that equipotential lines are always perpendicular to electric field lines. No work is required to move a
charge along an equipotential, since ΔV = 0 . Thus the work is

(19.43)W = –ΔPE = – qΔV = 0.

Work is zero if force is perpendicular to motion. Force is in the same direction as E , so that motion along an equipotential must

be perpendicular to E . More precisely, work is related to the electric field by

(19.44)W = Fd cos θ = qEd cos θ = 0.

Note that in the above equation, E and F symbolize the magnitudes of the electric field strength and force, respectively.

Neither q nor E nor d is zero, and so cos θ must be 0, meaning θ must be 90º . In other words, motion along an

equipotential is perpendicular to E .

One of the rules for static electric fields and conductors is that the electric field must be perpendicular to the surface of any
conductor. This implies that a conductor is an equipotential surface in static situations. There can be no voltage difference across
the surface of a conductor, or charges will flow. One of the uses of this fact is that a conductor can be fixed at zero volts by
connecting it to the earth with a good conductor—a process called grounding. Grounding can be a useful safety tool. For
example, grounding the metal case of an electrical appliance ensures that it is at zero volts relative to the earth.

Grounding

A conductor can be fixed at zero volts by connecting it to the earth with a good conductor—a process called grounding.

Because a conductor is an equipotential, it can replace any equipotential surface. For example, in Figure 19.12 a charged
spherical conductor can replace the point charge, and the electric field and potential surfaces outside of it will be unchanged,
confirming the contention that a spherical charge distribution is equivalent to a point charge at its center.

Figure 19.14 shows the electric field and equipotential lines for two equal and opposite charges. Given the electric field lines, the
equipotential lines can be drawn simply by making them perpendicular to the electric field lines. Conversely, given the
equipotential lines, as in Figure 19.15(a), the electric field lines can be drawn by making them perpendicular to the
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equipotentials, as in Figure 19.15(b).

Figure 19.14 The electric field lines and equipotential lines for two equal but opposite charges. The equipotential lines can be drawn by making them
perpendicular to the electric field lines, if those are known. Note that the potential is greatest (most positive) near the positive charge and least (most
negative) near the negative charge.

Figure 19.15 (a) These equipotential lines might be measured with a voltmeter in a laboratory experiment. (b) The corresponding electric field lines are
found by drawing them perpendicular to the equipotentials. Note that these fields are consistent with two equal negative charges.

One of the most important cases is that of the familiar parallel conducting plates shown in Figure 19.16. Between the plates, the
equipotentials are evenly spaced and parallel. The same field could be maintained by placing conducting plates at the
equipotential lines at the potentials shown.

Figure 19.16 The electric field and equipotential lines between two metal plates.

Making Connections: Slopes and Parallel Plates

Consider the parallel plates in Figure 19.2. These have equipotential lines that are parallel to the plates in the space
between, and evenly spaced. An example of this (with sample values) is given in Figure 19.16. One could draw a similar set
of equipotential isolines for gravity on the hill shown in Figure 19.2. If the hill has any extent at the same slope, the isolines
along that extent would be parallel to each other. Furthermore, in regions of constant slope, the isolines would be evenly
spaced.
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Figure 19.17 Note that a topographical map along a ridge has roughly parallel elevation lines, similar to the equipotential lines in Figure 19.16.

An important application of electric fields and equipotential lines involves the heart. The heart relies on electrical signals to
maintain its rhythm. The movement of electrical signals causes the chambers of the heart to contract and relax. When a person
has a heart attack, the movement of these electrical signals may be disturbed. An artificial pacemaker and a defibrillator can be
used to initiate the rhythm of electrical signals. The equipotential lines around the heart, the thoracic region, and the axis of the
heart are useful ways of monitoring the structure and functions of the heart. An electrocardiogram (ECG) measures the small
electric signals being generated during the activity of the heart. More about the relationship between electric fields and the heart
is discussed in Energy Stored in Capacitors.

PhET Explorations: Charges and Fields

Move point charges around on the playing field and then view the electric field, voltages, equipotential lines, and more. It's
colorful, it's dynamic, it's free.

Figure 19.18 Charges and Fields (http://cnx.org/content/m55336/1.3/charges-and-fields_en.jar)

19.5 Capacitors and Dielectrics

Learning Objectives
By the end of this section, you will be able to:

• Describe the action of a capacitor and define capacitance.
• Explain parallel plate capacitors and their capacitances.
• Discuss the process of increasing the capacitance of a capacitor with a dielectric.
• Determine capacitance given charge and voltage.

The information presented in this section supports the following AP® learning objectives and science pracitces:

• 4.E.4.1 The student is able to make predictions about the properties of resistors and/or capacitors when placed in a
simple circuit based on the geometry of the circuit element and supported by scientific theories and mathematical
relationships. (S.P. 2.2, 6.4)

• 4.E.4.2 The student is able to design a plan for the collection of data to determine the effect of changing the geometry
and/or materials on the resistance or capacitance of a circuit element and relate results to the basic properties of
resistors and capacitors. (S.P. 4.1, 4.2)

• 4.E.4.3 The student is able to analyze data to determine the effect of changing the geometry and/or materials on the
resistance or capacitance of a circuit element and relate results to the basic properties of resistors and capacitors. (S.P.
5.1)

A capacitor is a device used to store electric charge. Capacitors have applications ranging from filtering static out of radio
reception to energy storage in heart defibrillators. Typically, commercial capacitors have two conducting parts close to one
another, but not touching, such as those in Figure 19.19. (Most of the time an insulator is used between the two plates to provide
separation—see the discussion on dielectrics below.) When battery terminals are connected to an initially uncharged capacitor,
equal amounts of positive and negative charge, +Q and – Q , are separated into its two plates. The capacitor remains neutral

overall, but we refer to it as storing a charge Q in this circumstance.

Capacitor

A capacitor is a device used to store electric charge.
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Figure 19.19 Both capacitors shown here were initially uncharged before being connected to a battery. They now have separated charges of +Q
and – Q on their two halves. (a) A parallel plate capacitor. (b) A rolled capacitor with an insulating material between its two conducting sheets.

The amount of charge Q a capacitor can store depends on two major factors—the voltage applied and the capacitor’s physical

characteristics, such as its size.

The Amount of Charge Q a Capacitor Can Store

The amount of charge Q a capacitor can store depends on two major factors—the voltage applied and the capacitor’s

physical characteristics, such as its size.

A system composed of two identical, parallel conducting plates separated by a distance, as in Figure 19.20, is called a parallel
plate capacitor. It is easy to see the relationship between the voltage and the stored charge for a parallel plate capacitor, as
shown in Figure 19.20. Each electric field line starts on an individual positive charge and ends on a negative one, so that there
will be more field lines if there is more charge. (Drawing a single field line per charge is a convenience, only. We can draw many
field lines for each charge, but the total number is proportional to the number of charges.) The electric field strength is, thus,
directly proportional to Q .
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Figure 19.20 Electric field lines in this parallel plate capacitor, as always, start on positive charges and end on negative charges. Since the electric field
strength is proportional to the density of field lines, it is also proportional to the amount of charge on the capacitor.

The field is proportional to the charge:

(19.45)E ∝ Q,

where the symbol ∝ means “proportional to.” From the discussion in Electric Potential in a Uniform Electric Field, we know

that the voltage across parallel plates is V = Ed . Thus,

(19.46)V ∝ E.

It follows, then, that V ∝ Q , and conversely,

(19.47)Q ∝ V .

This is true in general: The greater the voltage applied to any capacitor, the greater the charge stored in it.

Different capacitors will store different amounts of charge for the same applied voltage, depending on their physical
characteristics. We define their capacitance C to be such that the charge Q stored in a capacitor is proportional to C . The

charge stored in a capacitor is given by

(19.48)Q = CV.

This equation expresses the two major factors affecting the amount of charge stored. Those factors are the physical
characteristics of the capacitor, C , and the voltage, V . Rearranging the equation, we see that capacitance C is the amount of

charge stored per volt, or

(19.49)C = Q
V .

Capacitance

Capacitance C is the amount of charge stored per volt, or

(19.50)C = Q
V .

The unit of capacitance is the farad (F), named for Michael Faraday (1791–1867), an English scientist who contributed to the
fields of electromagnetism and electrochemistry. Since capacitance is charge per unit voltage, we see that a farad is a coulomb
per volt, or
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(19.51)1 F = 1 C
1 V.

A 1-farad capacitor would be able to store 1 coulomb (a very large amount of charge) with the application of only 1 volt. One

farad is, thus, a very large capacitance. Typical capacitors range from fractions of a picofarad ⎛
⎝1 pF = 10–12 F⎞

⎠ to millifarads

⎛
⎝1 mF = 10–3 F⎞

⎠ .

Figure 19.21 shows some common capacitors. Capacitors are primarily made of ceramic, glass, or plastic, depending upon
purpose and size. Insulating materials, called dielectrics, are commonly used in their construction, as discussed below.

Figure 19.21 Some typical capacitors. Size and value of capacitance are not necessarily related. (credit: Windell Oskay)

Parallel Plate Capacitor

The parallel plate capacitor shown in Figure 19.22 has two identical conducting plates, each having a surface area A ,

separated by a distance d (with no material between the plates). When a voltage V is applied to the capacitor, it stores a

charge Q , as shown. We can see how its capacitance depends on A and d by considering the characteristics of the Coulomb

force. We know that like charges repel, unlike charges attract, and the force between charges decreases with distance. So it
seems quite reasonable that the bigger the plates are, the more charge they can store—because the charges can spread out
more. Thus C should be greater for larger A . Similarly, the closer the plates are together, the greater the attraction of the

opposite charges on them. So C should be greater for smaller d .

Figure 19.22 Parallel plate capacitor with plates separated by a distance d . Each plate has an area A .

It can be shown that for a parallel plate capacitor there are only two factors ( A and d ) that affect its capacitance C . The
capacitance of a parallel plate capacitor in equation form is given by

(19.52)C = ε0
A
d .

Capacitance of a Parallel Plate Capacitor
(19.53)C = ε0

A
d
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A is the area of one plate in square meters, and d is the distance between the plates in meters. The constant ε0 is the

permittivity of free space; its numerical value in SI units is ε0 = 8.85×10 – 12 F/m . The units of F/m are equivalent to

C2 /N · m2 . The small numerical value of ε0 is related to the large size of the farad. A parallel plate capacitor must have a

large area to have a capacitance approaching a farad. (Note that the above equation is valid when the parallel plates are
separated by air or free space. When another material is placed between the plates, the equation is modified, as discussed
below.)

Example 19.8 Capacitance and Charge Stored in a Parallel Plate Capacitor

(a) What is the capacitance of a parallel plate capacitor with metal plates, each of area 1.00 m2 , separated by 1.00 mm?

(b) What charge is stored in this capacitor if a voltage of 3.00×103 V is applied to it?

Strategy

Finding the capacitance C is a straightforward application of the equation C = ε0A / d . Once C is found, the charge

stored can be found using the equation Q = CV .

Solution for (a)

Entering the given values into the equation for the capacitance of a parallel plate capacitor yields

(19.54)
C = ε0

A
d = ⎛

⎝8.85×10–12 F
m

⎞
⎠

1.00 m2

1.00×10–3 m
= 8.85×10–9 F = 8.85 nF.

Discussion for (a)

This small value for the capacitance indicates how difficult it is to make a device with a large capacitance. Special
techniques help, such as using very large area thin foils placed close together.

Solution for (b)

The charge stored in any capacitor is given by the equation Q = CV . Entering the known values into this equation gives

(19.55)Q = CV = ⎛
⎝8.85×10–9 F⎞

⎠
⎛
⎝3.00×103 V⎞

⎠

= 26.6 µC.

Discussion for (b)

This charge is only slightly greater than those found in typical static electricity. Since air breaks down at about

3.00×106 V/m , more charge cannot be stored on this capacitor by increasing the voltage.

Another interesting biological example dealing with electric potential is found in the cell’s plasma membrane. The membrane sets
a cell off from its surroundings and also allows ions to selectively pass in and out of the cell. There is a potential difference
across the membrane of about –70 mV . This is due to the mainly negatively charged ions in the cell and the predominance of

positively charged sodium ( Na+ ) ions outside. Things change when a nerve cell is stimulated. Na+ ions are allowed to pass
through the membrane into the cell, producing a positive membrane potential—the nerve signal. The cell membrane is about 7 to
10 nm thick. An approximate value of the electric field across it is given by

(19.56)
E = V

d = –70×10–3 V
8×10–9 m

= –9×106 V/m.

This electric field is enough to cause a breakdown in air.

Dielectric

The previous example highlights the difficulty of storing a large amount of charge in capacitors. If d is made smaller to produce

a larger capacitance, then the maximum voltage must be reduced proportionally to avoid breakdown (since E = V / d ). An
important solution to this difficulty is to put an insulating material, called a dielectric, between the plates of a capacitor and allow
d to be as small as possible. Not only does the smaller d make the capacitance greater, but many insulators can withstand
greater electric fields than air before breaking down.

There is another benefit to using a dielectric in a capacitor. Depending on the material used, the capacitance is greater than that

given by the equation C = ε0
A
d by a factor κ , called the relative permittivity.[1] A parallel plate capacitor with a dielectric
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between its plates has a capacitance given by

(19.57)C = κε0
A
d (parallel plate capacitor with dielectric).

Values of the dielectric constant κ for various materials are given in Table 19.1. Note that κ for vacuum is exactly 1, and so the
above equation is valid in that case, too. If a dielectric is used, perhaps by placing Teflon between the plates of the capacitor in
Example 19.8, then the capacitance is greater by the factor κ , which for Teflon is 2.1.

Take-Home Experiment: Building a Capacitor

How large a capacitor can you make using a chewing gum wrapper? The plates will be the aluminum foil, and the separation
(dielectric) in between will be the paper.

Table 19.1 Dielectric Constants and Dielectric Strengths for Various Materials
at 20ºC

Material Dielectric constant κ Dielectric strength (V/m)

Vacuum 1.00000 —

Air 1.00059 3×106

Bakelite 4.9 24×106

Fused quartz 3.78 8×106

Neoprene rubber 6.7 12×106

Nylon 3.4 14×106

Paper 3.7 16×106

Polystyrene 2.56 24×106

Pyrex glass 5.6 14×106

Silicon oil 2.5 15×106

Strontium titanate 233 8×106

Teflon 2.1 60×106

Water 80 —

Note also that the dielectric constant for air is very close to 1, so that air-filled capacitors act much like those with vacuum
between their plates except that the air can become conductive if the electric field strength becomes too great. (Recall that
E = V / d for a parallel plate capacitor.) Also shown in Table 19.1 are maximum electric field strengths in V/m, called dielectric
strengths, for several materials. These are the fields above which the material begins to break down and conduct. The dielectric
strength imposes a limit on the voltage that can be applied for a given plate separation. For instance, in Example 19.8, the
separation is 1.00 mm, and so the voltage limit for air is

(19.58)V = E ⋅ d
= (3×106 V/m)(1.00×10−3 m)
= 3000 V.

However, the limit for a 1.00 mm separation filled with Teflon is 60,000 V, since the dielectric strength of Teflon is 60×106 V/m.
So the same capacitor filled with Teflon has a greater capacitance and can be subjected to a much greater voltage. Using the
capacitance we calculated in the above example for the air-filled parallel plate capacitor, we find that the Teflon-filled capacitor
can store a maximum charge of

1. Historically, the term dielectric constant was used. However, it is currently deprecated by standards organizations because
this term was used for both relative and absolute permittivity, creating unfortunate and unnecessary ambiguity.
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(19.59)Q = CV
= κCair V

= (2.1)(8.85 nF)(6.0×104 V)
= 1.1 mC.

This is 42 times the charge of the same air-filled capacitor.

Dielectric Strength

The maximum electric field strength above which an insulating material begins to break down and conduct is called its
dielectric strength.

Microscopically, how does a dielectric increase capacitance? Polarization of the insulator is responsible. The more easily it is
polarized, the greater its dielectric constant κ . Water, for example, is a polar molecule because one end of the molecule has a
slight positive charge and the other end has a slight negative charge. The polarity of water causes it to have a relatively large
dielectric constant of 80. The effect of polarization can be best explained in terms of the characteristics of the Coulomb force.
Figure 19.23 shows the separation of charge schematically in the molecules of a dielectric material placed between the charged
plates of a capacitor. The Coulomb force between the closest ends of the molecules and the charge on the plates is attractive
and very strong, since they are very close together. This attracts more charge onto the plates than if the space were empty and
the opposite charges were a distance d away.

Figure 19.23 (a) The molecules in the insulating material between the plates of a capacitor are polarized by the charged plates. This produces a layer
of opposite charge on the surface of the dielectric that attracts more charge onto the plate, increasing its capacitance. (b) The dielectric reduces the
electric field strength inside the capacitor, resulting in a smaller voltage between the plates for the same charge. The capacitor stores the same charge
for a smaller voltage, implying that it has a larger capacitance because of the dielectric.

Another way to understand how a dielectric increases capacitance is to consider its effect on the electric field inside the
capacitor. Figure 19.23(b) shows the electric field lines with a dielectric in place. Since the field lines end on charges in the
dielectric, there are fewer of them going from one side of the capacitor to the other. So the electric field strength is less than if
there were a vacuum between the plates, even though the same charge is on the plates. The voltage between the plates is
V = Ed , so it too is reduced by the dielectric. Thus there is a smaller voltage V for the same charge Q ; since C = Q / V ,

the capacitance C is greater.

The dielectric constant is generally defined to be κ = E0 / E , or the ratio of the electric field in a vacuum to that in the dielectric

material, and is intimately related to the polarizability of the material.
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Things Great and Small

The Submicroscopic Origin of Polarization

Polarization is a separation of charge within an atom or molecule. As has been noted, the planetary model of the atom
pictures it as having a positive nucleus orbited by negative electrons, analogous to the planets orbiting the Sun. Although
this model is not completely accurate, it is very helpful in explaining a vast range of phenomena and will be refined
elsewhere, such as in Atomic Physics. The submicroscopic origin of polarization can be modeled as shown in Figure
19.24.

Figure 19.24 Artist’s conception of a polarized atom. The orbits of electrons around the nucleus are shifted slightly by the external charges (shown
exaggerated). The resulting separation of charge within the atom means that it is polarized. Note that the unlike charge is now closer to the external
charges, causing the polarization.

We will find in Atomic Physics that the orbits of electrons are more properly viewed as electron clouds with the density of the
cloud related to the probability of finding an electron in that location (as opposed to the definite locations and paths of planets in
their orbits around the Sun). This cloud is shifted by the Coulomb force so that the atom on average has a separation of charge.
Although the atom remains neutral, it can now be the source of a Coulomb force, since a charge brought near the atom will be
closer to one type of charge than the other.

Some molecules, such as those of water, have an inherent separation of charge and are thus called polar molecules. Figure
19.25 illustrates the separation of charge in a water molecule, which has two hydrogen atoms and one oxygen atom ⎛

⎝H2 O⎞
⎠ .

The water molecule is not symmetric—the hydrogen atoms are repelled to one side, giving the molecule a boomerang shape.
The electrons in a water molecule are more concentrated around the more highly charged oxygen nucleus than around the
hydrogen nuclei. This makes the oxygen end of the molecule slightly negative and leaves the hydrogen ends slightly positive.
The inherent separation of charge in polar molecules makes it easier to align them with external fields and charges. Polar
molecules therefore exhibit greater polarization effects and have greater dielectric constants. Those who study chemistry will find
that the polar nature of water has many effects. For example, water molecules gather ions much more effectively because they
have an electric field and a separation of charge to attract charges of both signs. Also, as brought out in the previous chapter,
polar water provides a shield or screening of the electric fields in the highly charged molecules of interest in biological systems.

Figure 19.25 Artist’s conception of a water molecule. There is an inherent separation of charge, and so water is a polar molecule. Electrons in the
molecule are attracted to the oxygen nucleus and leave an excess of positive charge near the two hydrogen nuclei. (Note that the schematic on the
right is a rough illustration of the distribution of electrons in the water molecule. It does not show the actual numbers of protons and electrons involved
in the structure.)

PhET Explorations: Capacitor Lab

Explore how a capacitor works! Change the size of the plates and add a dielectric to see the effect on capacitance. Change
the voltage and see charges built up on the plates. Observe the electric field in the capacitor. Measure the voltage and the
electric field.
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Figure 19.26 Capacitor Lab (http://cnx.org/content/m55340/1.2/capacitor-lab_en.jar)

19.6 Capacitors in Series and Parallel

Learning Objectives
By the end of this section, you will be able to:

• Derive expressions for total capacitance in series and in parallel.
• Identify series and parallel parts in the combination of connection of capacitors.
• Calculate the effective capacitance in series and parallel given individual capacitances.

Several capacitors may be connected together in a variety of applications. Multiple connections of capacitors act like a single
equivalent capacitor. The total capacitance of this equivalent single capacitor depends both on the individual capacitors and how
they are connected. There are two simple and common types of connections, called series and parallel, for which we can easily
calculate the total capacitance. Certain more complicated connections can also be related to combinations of series and parallel.

Capacitance in Series
Figure 19.27(a) shows a series connection of three capacitors with a voltage applied. As for any capacitor, the capacitance of

the combination is related to charge and voltage by C = Q
V .

Note in Figure 19.27 that opposite charges of magnitude Q flow to either side of the originally uncharged combination of

capacitors when the voltage V is applied. Conservation of charge requires that equal-magnitude charges be created on the
plates of the individual capacitors, since charge is only being separated in these originally neutral devices. The end result is that
the combination resembles a single capacitor with an effective plate separation greater than that of the individual capacitors
alone. (See Figure 19.27(b).) Larger plate separation means smaller capacitance. It is a general feature of series connections of
capacitors that the total capacitance is less than any of the individual capacitances.
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Figure 19.27 (a) Capacitors connected in series. The magnitude of the charge on each plate is Q . (b) An equivalent capacitor has a larger plate

separation d . Series connections produce a total capacitance that is less than that of any of the individual capacitors.

We can find an expression for the total capacitance by considering the voltage across the individual capacitors shown in Figure

19.27. Solving C = Q
V for V gives V = Q

C . The voltages across the individual capacitors are thus V1 = Q
C1

, V2 = Q
C2

,

and V3 = Q
C3

. The total voltage is the sum of the individual voltages:

(19.60)V = V1 + V2 + V3.

Now, calling the total capacitance CS for series capacitance, consider that

(19.61)V = Q
CS

= V1 + V2 + V3 .

Entering the expressions for V1 , V2 , and V3 , we get

(19.62)Q
CS

= Q
C1

+ Q
C2

+ Q
C3

.

Canceling the Q s, we obtain the equation for the total capacitance in series CS to be

(19.63)1
CS

= 1
C1

+ 1
C2

+ 1
C3

+ ...,

where “...” indicates that the expression is valid for any number of capacitors connected in series. An expression of this form
always results in a total capacitance CS that is less than any of the individual capacitances C1 , C2 , ..., as the next example

illustrates.

860 Chapter 19 | Electric Potential and Electric Field

This OpenStax book is available for free at http://cnx.org/content/col11844/1.14



Total Capacitance in Series, Cs

Total capacitance in series: 1
CS

= 1
C1

+ 1
C2

+ 1
C3

+ ...

Example 19.9 What Is the Series Capacitance?

Find the total capacitance for three capacitors connected in series, given their individual capacitances are 1.000, 5.000, and
8.000 µF .

Strategy

With the given information, the total capacitance can be found using the equation for capacitance in series.

Solution

Entering the given capacitances into the expression for 1
CS

gives 1
CS

= 1
C1

+ 1
C2

+ 1
C3

.

(19.64)1
CS

= 1
1.000 µF + 1

5.000 µF + 1
8.000 µF = 1.325

µF

Inverting to find CS yields CS = µF
1.325 = 0.755 µF .

Discussion

The total series capacitance Cs is less than the smallest individual capacitance, as promised. In series connections of

capacitors, the sum is less than the parts. In fact, it is less than any individual. Note that it is sometimes possible, and more
convenient, to solve an equation like the above by finding the least common denominator, which in this case (showing only
whole-number calculations) is 40. Thus,

(19.65)1
CS

= 40
40 µF + 8

40 µF + 5
40 µF = 53

40 µF,

so that

(19.66)
CS = 40 µF

53 = 0.755 µF.

Capacitors in Parallel
Figure 19.28(a) shows a parallel connection of three capacitors with a voltage applied. Here the total capacitance is easier to
find than in the series case. To find the equivalent total capacitance Cp , we first note that the voltage across each capacitor is

V , the same as that of the source, since they are connected directly to it through a conductor. (Conductors are equipotentials,
and so the voltage across the capacitors is the same as that across the voltage source.) Thus the capacitors have the same
charges on them as they would have if connected individually to the voltage source. The total charge Q is the sum of the

individual charges:

(19.67)Q = Q1 + Q2 + Q3.
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Figure 19.28 (a) Capacitors in parallel. Each is connected directly to the voltage source just as if it were all alone, and so the total capacitance in
parallel is just the sum of the individual capacitances. (b) The equivalent capacitor has a larger plate area and can therefore hold more charge than the
individual capacitors.

Using the relationship Q = CV , we see that the total charge is Q = CpV , and the individual charges are Q1 = C1V ,

Q2 = C2V , and Q3 = C3V . Entering these into the previous equation gives

(19.68)Cp V = C1V + C2V + C3V .

Canceling V from the equation, we obtain the equation for the total capacitance in parallel Cp :

(19.69)Cp = C1 + C2 + C3 + ....

Total capacitance in parallel is simply the sum of the individual capacitances. (Again the “...” indicates the expression is valid for
any number of capacitors connected in parallel.) So, for example, if the capacitors in the example above were connected in
parallel, their capacitance would be

(19.70)Cp = 1.000 µF+5.000 µF+8.000 µF = 14.000 µF.

The equivalent capacitor for a parallel connection has an effectively larger plate area and, thus, a larger capacitance, as
illustrated in Figure 19.28(b).

Total Capacitance in Parallel, Cp

Total capacitance in parallel Cp = C1 + C2 + C3 + ...

More complicated connections of capacitors can sometimes be combinations of series and parallel. (See Figure 19.29.) To find
the total capacitance of such combinations, we identify series and parallel parts, compute their capacitances, and then find the
total.

Figure 19.29 (a) This circuit contains both series and parallel connections of capacitors. See Example 19.10 for the calculation of the overall
capacitance of the circuit. (b) C1 and C2 are in series; their equivalent capacitance CS is less than either of them. (c) Note that CS is in parallel

with C3 . The total capacitance is, thus, the sum of CS and C3 .
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Example 19.10 A Mixture of Series and Parallel Capacitance

Find the total capacitance of the combination of capacitors shown in Figure 19.29. Assume the capacitances in Figure
19.29 are known to three decimal places ( C1 = 1.000 µF , C2 = 5.000 µF , and C3 = 8.000 µF ), and round your

answer to three decimal places.

Strategy

To find the total capacitance, we first identify which capacitors are in series and which are in parallel. Capacitors C1 and

C2 are in series. Their combination, labeled CS in the figure, is in parallel with C3 .

Solution

Since C1 and C2 are in series, their total capacitance is given by 1
CS

= 1
C1

+ 1
C2

+ 1
C3

. Entering their values into the

equation gives

(19.71)1
CS

= 1
C1

+ 1
C2

= 1
1.000 µF + 1

5.000 µF = 1.200
µF .

Inverting gives

(19.72)CS = 0.833 µF.

This equivalent series capacitance is in parallel with the third capacitor; thus, the total is the sum

(19.73)Ctot = CS + CS
= 0.833 µF + 8.000 µF
= 8.833 µF.

Discussion

This technique of analyzing the combinations of capacitors piece by piece until a total is obtained can be applied to larger
combinations of capacitors.

19.7 Energy Stored in Capacitors

Learning Objectives
By the end of this section, you will be able to:

• List some uses of capacitors.
• Express in equation form the energy stored in a capacitor.
• Explain the function of a defibrillator.

The information presented in this section supports the following AP® learning objectives and science practices:

• 5.B.2.1 The student is able to calculate the expected behavior of a system using the object model (i.e., by ignoring
changes in internal structure) to analyze a situation. Then, when the model fails, the student can justify the use of
conservation of energy principles to calculate the change in internal energy due to changes in internal structure
because the object is actually a system. (S.P. 1.4, 2.1)

• 5.B.3.1 The student is able to describe and make qualitative and/or quantitative predictions about everyday examples
of systems with internal potential energy. (S.P. 2.2, 6.4, 7.2)

• 5.B.3.2 The student is able to make quantitative calculations of the internal potential energy of a system from a
description or diagram of that system. (S.P. 1.4, 2.2)

• 5.B.3.3 The student is able to apply mathematical reasoning to create a description of the internal potential energy of a
system from a description or diagram of the objects and interactions in that system. (S.P. 1.4, 2.2)

Most of us have seen dramatizations in which medical personnel use a defibrillator to pass an electric current through a
patient’s heart to get it to beat normally. (Review Figure 19.30.) Often realistic in detail, the person applying the shock directs
another person to “make it 400 joules this time.” The energy delivered by the defibrillator is stored in a capacitor and can be
adjusted to fit the situation. SI units of joules are often employed. Less dramatic is the use of capacitors in microelectronics, such
as certain handheld calculators, to supply energy when batteries are charged. (See Figure 19.30.) Capacitors are also used to
supply energy for flash lamps on cameras.
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Figure 19.30 Energy stored in the large capacitor is used to preserve the memory of an electronic calculator when its batteries are charged. (credit:
Kucharek, Wikimedia Commons)

Energy stored in a capacitor is electrical potential energy, and it is thus related to the charge Q and voltage V on the capacitor.

We must be careful when applying the equation for electrical potential energy ΔPE = qΔV to a capacitor. Remember that

ΔPE is the potential energy of a charge q going through a voltage ΔV . But the capacitor starts with zero voltage and

gradually comes up to its full voltage as it is charged. The first charge placed on a capacitor experiences a change in voltage
ΔV = 0 , since the capacitor has zero voltage when uncharged. The final charge placed on a capacitor experiences ΔV = V ,

since the capacitor now has its full voltage V on it. The average voltage on the capacitor during the charging process is V / 2 ,

and so the average voltage experienced by the full charge q is V / 2 . Thus the energy stored in a capacitor, Ecap , is

(19.74)Ecap = QV
2 ,

where Q is the charge on a capacitor with a voltage V applied. (Note that the energy is not QV , but QV / 2 .) Charge and

voltage are related to the capacitance C of a capacitor by Q = CV , and so the expression for Ecap can be algebraically

manipulated into three equivalent expressions:

(19.75)
Ecap = QV

2 = CV 2

2 = Q2

2C ,

where Q is the charge and V the voltage on a capacitor C . The energy is in joules for a charge in coulombs, voltage in volts,

and capacitance in farads.

Energy Stored in Capacitors

The energy stored in a capacitor can be expressed in three ways:

(19.76)
Ecap = QV

2 = CV 2

2 = Q2

2C ,

where Q is the charge, V is the voltage, and C is the capacitance of the capacitor. The energy is in joules for a charge in

coulombs, voltage in volts, and capacitance in farads. Energy stored in the capacitor is internal potential energy.

Making Connections: Point Charges and Capacitors

Recall that we were able to calculate the stored potential energy of a configuration of point charges, and how the energy
changed when the configuration changed in Applying the Science Practices: Work and Potential Energy in Point
Charges. Since the charges in a capacitor are, ultimately, all point charges, we can do the same with capacitors. However,
we write it down in terms of the macroscopic quantities of (total) charge, voltage, and capacitance; hence Equation (19.76).

For example, consider a parallel plate capacitor with a variable distance between the plates connected to a battery (fixed
voltage). When you move the plates closer together, the voltage still doesn’t change. However, this increases the
capacitance, and hence the internal energy stored in this system (the capacitor) increases. It turns out that the increase in
capacitance for a fixed voltage results in an increased charge. The work you did moving the plates closer together ultimately
went into moving more electrons from the positive plate to the negative plate.

In a defibrillator, the delivery of a large charge in a short burst to a set of paddles across a person’s chest can be a lifesaver. The
person’s heart attack might have arisen from the onset of fast, irregular beating of the heart—cardiac or ventricular fibrillation.
The application of a large shock of electrical energy can terminate the arrhythmia and allow the body’s pacemaker to resume
normal patterns. Today it is common for ambulances to carry a defibrillator, which also uses an electrocardiogram to analyze the
patient’s heartbeat pattern. Automated external defibrillators (AED) are found in many public places (Figure 19.31). These are
designed to be used by lay persons. The device automatically diagnoses the patient’s heart condition and then applies the shock
with appropriate energy and waveform. CPR is recommended in many cases before use of an AED.
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capacitance:

capacitor:

defibrillator:

dielectric:

dielectric strength:

electric potential:

electron volt:

Figure 19.31 Automated external defibrillators are found in many public places. These portable units provide verbal instructions for use in the important
first few minutes for a person suffering a cardiac attack. (credit: Owain Davies, Wikimedia Commons)

Example 19.11 Capacitance in a Heart Defibrillator

A heart defibrillator delivers 4.00×102 J of energy by discharging a capacitor initially at 1.00×104 V . What is its
capacitance?

Strategy

We are given Ecap and V , and we are asked to find the capacitance C . Of the three expressions in the equation for

Ecap , the most convenient relationship is

(19.77)
Ecap = CV 2

2 .

Solution

Solving this expression for C and entering the given values yields

(19.78)
C =

2Ecap

V 2 = 2(4.00×102 J)
(1.00×104 V)2 = 8.00×10 – 6 F

= 8.00 µF.

Discussion

This is a fairly large, but manageable, capacitance at 1.00×104 V .

Glossary
amount of charge stored per unit volt

a device that stores electric charge

a machine used to provide an electrical shock to a heart attack victim's heart in order to restore the heart's
normal rhythmic pattern

an insulating material

the maximum electric field above which an insulating material begins to break down and conduct

potential energy per unit charge

the energy given to a fundamental charge accelerated through a potential difference of one volt
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equipotential line:

grounding:

mechanical energy:

parallel plate capacitor:

polar molecule:

potential difference (or voltage):

scalar:

vector:

a line along which the electric potential is constant

fixing a conductor at zero volts by connecting it to the earth or ground

sum of the kinetic energy and potential energy of a system; this sum is a constant

two identical conducting plates separated by a distance

a molecule with inherent separation of charge

change in potential energy of a charge moved from one point to another, divided by the
charge; units of potential difference are joules per coulomb, known as volt

physical quantity with magnitude but no direction

physical quantity with both magnitude and direction

Section Summary

19.1 Electric Potential Energy: Potential Difference
• Electric potential is potential energy per unit charge.
• The potential difference between points A and B, VB – VA , defined to be the change in potential energy of a charge q

moved from A to B, is equal to the change in potential energy divided by the charge, Potential difference is commonly
called voltage, represented by the symbol ΔV .

ΔV = ΔPE
q and ΔPE = qΔV .

• An electron volt is the energy given to a fundamental charge accelerated through a potential difference of 1 V. In equation
form,

1 eV = ⎛
⎝1.60×10–19 C⎞

⎠(1 V) = ⎛
⎝1.60×10–19 C⎞

⎠(1 J/C)

= 1.60×10–19 J.
• Mechanical energy is the sum of the kinetic energy and potential energy of a system, that is, KE + PE. This sum is a

constant.

19.2 Electric Potential in a Uniform Electric Field
• The voltage between points A and B is

VAB = Ed

E = VAB
d

⎫

⎭
⎬(uniform E - field on y),

where d is the distance from A to B, or the distance between the plates.
• In equation form, the general relationship between voltage and electric field is

E = – ΔV
Δs ,

where Δs is the distance over which the change in potential, ΔV , takes place. The minus sign tells us that E points in
the direction of decreasing potential.) The electric field is said to be the gradient (as in grade or slope) of the electric
potential.

19.3 Electrical Potential Due to a Point Charge
• Electric potential of a point charge is V = kQ / r .

• Electric potential is a scalar, and electric field is a vector. Addition of voltages as numbers gives the voltage due to a
combination of point charges, whereas addition of individual fields as vectors gives the total electric field.

19.4 Equipotential Lines
• An equipotential line is a line along which the electric potential is constant.
• An equipotential surface is a three-dimensional version of equipotential lines.
• Equipotential lines are always perpendicular to electric field lines.
• The process by which a conductor can be fixed at zero volts by connecting it to the earth with a good conductor is called

grounding.

19.5 Capacitors and Dielectrics
• A capacitor is a device used to store charge.
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• The amount of charge Q a capacitor can store depends on two major factors—the voltage applied and the capacitor’s

physical characteristics, such as its size.
• The capacitance C is the amount of charge stored per volt, or

C = Q
V .

• The capacitance of a parallel plate capacitor is C = ε0
A
d , when the plates are separated by air or free space. ε0 is

called the permittivity of free space.
• A parallel plate capacitor with a dielectric between its plates has a capacitance given by

C = κε0
A
d ,

where κ is the dielectric constant of the material.
• The maximum electric field strength above which an insulating material begins to break down and conduct is called

dielectric strength.

19.6 Capacitors in Series and Parallel
• Total capacitance in series 1

CS
= 1

C1
+ 1

C2
+ 1

C3
+ ...

• Total capacitance in parallel Cp = C1 + C2 + C3 + ...
• If a circuit contains a combination of capacitors in series and parallel, identify series and parallel parts, compute their

capacitances, and then find the total.

19.7 Energy Stored in Capacitors
• Capacitors are used in a variety of devices, including defibrillators, microelectronics such as calculators, and flash lamps, to

supply energy.
• The energy stored in a capacitor can be expressed in three ways:

Ecap = QV
2 = CV 2

2 = Q2

2C ,

where Q is the charge, V is the voltage, and C is the capacitance of the capacitor. The energy is in joules when the

charge is in coulombs, voltage is in volts, and capacitance is in farads.

Conceptual Questions

19.1 Electric Potential Energy: Potential Difference
1. Voltage is the common word for potential difference. Which term is more descriptive, voltage or potential difference?

2. If the voltage between two points is zero, can a test charge be moved between them with zero net work being done? Can this
necessarily be done without exerting a force? Explain.

3. What is the relationship between voltage and energy? More precisely, what is the relationship between potential difference and
electric potential energy?

4. Voltages are always measured between two points. Why?

5. How are units of volts and electron volts related? How do they differ?

19.2 Electric Potential in a Uniform Electric Field
6. Discuss how potential difference and electric field strength are related. Give an example.

7. What is the strength of the electric field in a region where the electric potential is constant?

8. Will a negative charge, initially at rest, move toward higher or lower potential? Explain why.

19.3 Electrical Potential Due to a Point Charge
9. In what region of space is the potential due to a uniformly charged sphere the same as that of a point charge? In what region
does it differ from that of a point charge?

10. Can the potential of a non-uniformly charged sphere be the same as that of a point charge? Explain.

19.4 Equipotential Lines
11. What is an equipotential line? What is an equipotential surface?

12. Explain in your own words why equipotential lines and surfaces must be perpendicular to electric field lines.
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13. Can different equipotential lines cross? Explain.

19.5 Capacitors and Dielectrics
14. Does the capacitance of a device depend on the applied voltage? What about the charge stored in it?

15. Use the characteristics of the Coulomb force to explain why capacitance should be proportional to the plate area of a
capacitor. Similarly, explain why capacitance should be inversely proportional to the separation between plates.

16. Give the reason why a dielectric material increases capacitance compared with what it would be with air between the plates
of a capacitor. What is the independent reason that a dielectric material also allows a greater voltage to be applied to a
capacitor? (The dielectric thus increases C and permits a greater V .)

17. How does the polar character of water molecules help to explain water’s relatively large dielectric constant? (Figure 19.25)

18. Sparks will occur between the plates of an air-filled capacitor at lower voltage when the air is humid than when dry. Explain
why, considering the polar character of water molecules.

19. Water has a large dielectric constant, but it is rarely used in capacitors. Explain why.

20. Membranes in living cells, including those in humans, are characterized by a separation of charge across the membrane.
Effectively, the membranes are thus charged capacitors with important functions related to the potential difference across the
membrane. Is energy required to separate these charges in living membranes and, if so, is its source the metabolization of food
energy or some other source?

Figure 19.32 The semipermeable membrane of a cell has different concentrations of ions inside and out. Diffusion moves the K+ (potassium) and

Cl– (chloride) ions in the directions shown, until the Coulomb force halts further transfer. This results in a layer of positive charge on the outside, a

layer of negative charge on the inside, and thus a voltage across the cell membrane. The membrane is normally impermeable to Na+ (sodium ions).

19.6 Capacitors in Series and Parallel
21. If you wish to store a large amount of energy in a capacitor bank, would you connect capacitors in series or parallel?
Explain.

19.7 Energy Stored in Capacitors
22. How does the energy contained in a charged capacitor change when a dielectric is inserted, assuming the capacitor is
isolated and its charge is constant? Does this imply that work was done?

23. What happens to the energy stored in a capacitor connected to a battery when a dielectric is inserted? Was work done in the
process?
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Problems & Exercises

19.1 Electric Potential Energy: Potential
Difference
1. Find the ratio of speeds of an electron and a negative
hydrogen ion (one having an extra electron) accelerated
through the same voltage, assuming non-relativistic final
speeds. Take the mass of the hydrogen ion to be

1.67×10 – 27 kg.

2. An evacuated tube uses an accelerating voltage of 40 kV
to accelerate electrons to hit a copper plate and produce x
rays. Non-relativistically, what would be the maximum speed
of these electrons?

3. A bare helium nucleus has two positive charges and a

mass of 6.64×10–27 kg. (a) Calculate its kinetic energy in

joules at 2.00% of the speed of light. (b) What is this in
electron volts? (c) What voltage would be needed to obtain
this energy?

4. Integrated Concepts

Singly charged gas ions are accelerated from rest through a
voltage of 13.0 V. At what temperature will the average kinetic
energy of gas molecules be the same as that given these
ions?

5. Integrated Concepts

The temperature near the center of the Sun is thought to be

15 million degrees Celsius ⎛
⎝1.5×107 ºC⎞

⎠ . Through what

voltage must a singly charged ion be accelerated to have the
same energy as the average kinetic energy of ions at this
temperature?

6. Integrated Concepts

(a) What is the average power output of a heart defibrillator
that dissipates 400 J of energy in 10.0 ms? (b) Considering
the high-power output, why doesn’t the defibrillator produce
serious burns?

7. Integrated Concepts

A lightning bolt strikes a tree, moving 20.0 C of charge

through a potential difference of 1.00×102 MV . (a) What
energy was dissipated? (b) What mass of water could be
raised from 15ºC to the boiling point and then boiled by this
energy? (c) Discuss the damage that could be caused to the
tree by the expansion of the boiling steam.

8. Integrated Concepts

A 12.0 V battery-operated bottle warmer heats 50.0 g of

glass, 2.50×102 g of baby formula, and 2.00×102 g of

aluminum from 20.0ºC to 90.0ºC . (a) How much charge is
moved by the battery? (b) How many electrons per second
flow if it takes 5.00 min to warm the formula? (Hint: Assume
that the specific heat of baby formula is about the same as
the specific heat of water.)

9. Integrated Concepts

A battery-operated car utilizes a 12.0 V system. Find the
charge the batteries must be able to move in order to
accelerate the 750 kg car from rest to 25.0 m/s, make it climb

a 2.00×102 m high hill, and then cause it to travel at a

constant 25.0 m/s by exerting a 5.00×102 N force for an
hour.

10. Integrated Concepts

Fusion probability is greatly enhanced when appropriate
nuclei are brought close together, but mutual Coulomb
repulsion must be overcome. This can be done using the
kinetic energy of high-temperature gas ions or by accelerating
the nuclei toward one another. (a) Calculate the potential
energy of two singly charged nuclei separated by

1.00×10–12 m by finding the voltage of one at that
distance and multiplying by the charge of the other. (b) At
what temperature will atoms of a gas have an average kinetic
energy equal to this needed electrical potential energy?

11. Unreasonable Results

(a) Find the voltage near a 10.0 cm diameter metal sphere
that has 8.00 C of excess positive charge on it. (b) What is
unreasonable about this result? (c) Which assumptions are
responsible?

12. Construct Your Own Problem

Consider a battery used to supply energy to a cellular phone.
Construct a problem in which you determine the energy that
must be supplied by the battery, and then calculate the
amount of charge it must be able to move in order to supply
this energy. Among the things to be considered are the
energy needs and battery voltage. You may need to look
ahead to interpret manufacturer’s battery ratings in ampere-
hours as energy in joules.

19.2 Electric Potential in a Uniform Electric
Field
13. Show that units of V/m and N/C for electric field strength
are indeed equivalent.

14. What is the strength of the electric field between two
parallel conducting plates separated by 1.00 cm and having a

potential difference (voltage) between them of 1.50×104 V
?

15. The electric field strength between two parallel conducting

plates separated by 4.00 cm is 7.50×104 V/m . (a) What is
the potential difference between the plates? (b) The plate with
the lowest potential is taken to be at zero volts. What is the
potential 1.00 cm from that plate (and 3.00 cm from the
other)?

16. How far apart are two conducting plates that have an

electric field strength of 4.50×103 V/m between them, if
their potential difference is 15.0 kV?

17. (a) Will the electric field strength between two parallel
conducting plates exceed the breakdown strength for air (

3.0×106 V/m ) if the plates are separated by 2.00 mm and

a potential difference of 5.0×103 V is applied? (b) How
close together can the plates be with this applied voltage?
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18. The voltage across a membrane forming a cell wall is
80.0 mV and the membrane is 9.00 nm thick. What is the
electric field strength? (The value is surprisingly large, but
correct. Membranes are discussed in Capacitors and
Dielectrics and Nerve Conduction—Electrocardiograms.)
You may assume a uniform electric field.

19. Membrane walls of living cells have surprisingly large
electric fields across them due to separation of ions.
(Membranes are discussed in some detail in Nerve
Conduction—Electrocardiograms.) What is the voltage
across an 8.00 nm–thick membrane if the electric field
strength across it is 5.50 MV/m? You may assume a uniform
electric field.

20. Two parallel conducting plates are separated by 10.0 cm,
and one of them is taken to be at zero volts. (a) What is the
electric field strength between them, if the potential 8.00 cm
from the zero volt plate (and 2.00 cm from the other) is 450
V? (b) What is the voltage between the plates?

21. Find the maximum potential difference between two
parallel conducting plates separated by 0.500 cm of air, given
the maximum sustainable electric field strength in air to be

3.0×106 V/m .

22. A doubly charged ion is accelerated to an energy of 32.0
keV by the electric field between two parallel conducting
plates separated by 2.00 cm. What is the electric field
strength between the plates?

23. An electron is to be accelerated in a uniform electric field

having a strength of 2.00×106 V/m . (a) What energy in
keV is given to the electron if it is accelerated through 0.400
m? (b) Over what distance would it have to be accelerated to
increase its energy by 50.0 GeV?

19.3 Electrical Potential Due to a Point Charge
24. A 0.500 cm diameter plastic sphere, used in a static
electricity demonstration, has a uniformly distributed 40.0 pC
charge on its surface. What is the potential near its surface?

25. What is the potential 0.530×10–10 m from a proton (the
average distance between the proton and electron in a
hydrogen atom)?

26. (a) A sphere has a surface uniformly charged with 1.00 C.
At what distance from its center is the potential 5.00 MV? (b)
What does your answer imply about the practical aspect of
isolating such a large charge?

27. How far from a 1.00 µC point charge will the potential be

100 V? At what distance will it be 2.00×102 V?
28. What are the sign and magnitude of a point charge that
produces a potential of –2.00 V at a distance of 1.00 mm?

29. If the potential due to a point charge is 5.00×102 V at a
distance of 15.0 m, what are the sign and magnitude of the
charge?

30. In nuclear fission, a nucleus splits roughly in half. (a)

What is the potential 2.00×10 – 14 m from a fragment that
has 46 protons in it? (b) What is the potential energy in MeV
of a similarly charged fragment at this distance?

31. A research Van de Graaff generator has a 2.00-m-
diameter metal sphere with a charge of 5.00 mC on it. (a)
What is the potential near its surface? (b) At what distance
from its center is the potential 1.00 MV? (c) An oxygen atom
with three missing electrons is released near the Van de
Graaff generator. What is its energy in MeV at this distance?

32. An electrostatic paint sprayer has a 0.200-m-diameter
metal sphere at a potential of 25.0 kV that repels paint
droplets onto a grounded object. (a) What charge is on the
sphere? (b) What charge must a 0.100-mg drop of paint have
to arrive at the object with a speed of 10.0 m/s?

33. In one of the classic nuclear physics experiments at the
beginning of the 20th century, an alpha particle was
accelerated toward a gold nucleus, and its path was
substantially deflected by the Coulomb interaction. If the
energy of the doubly charged alpha nucleus was 5.00 MeV,
how close to the gold nucleus (79 protons) could it come
before being deflected?

34. (a) What is the potential between two points situated 10
cm and 20 cm from a 3.0 µC point charge? (b) To what

location should the point at 20 cm be moved to increase this
potential difference by a factor of two?

35. Unreasonable Results

(a) What is the final speed of an electron accelerated from
rest through a voltage of 25.0 MV by a negatively charged
Van de Graaff terminal?

(b) What is unreasonable about this result?

(c) Which assumptions are responsible?

19.4 Equipotential Lines
36. (a) Sketch the equipotential lines near a point charge + q
. Indicate the direction of increasing potential. (b) Do the
same for a point charge – 3 q .

37. Sketch the equipotential lines for the two equal positive
charges shown in Figure 19.33. Indicate the direction of
increasing potential.

Figure 19.33 The electric field near two equal positive charges is
directed away from each of the charges.

38. Figure 19.34 shows the electric field lines near two
charges q1 and q2 , the first having a magnitude four times

that of the second. Sketch the equipotential lines for these
two charges, and indicate the direction of increasing
potential.
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39. Sketch the equipotential lines a long distance from the
charges shown in Figure 19.34. Indicate the direction of
increasing potential.

Figure 19.34 The electric field near two charges.

40. Sketch the equipotential lines in the vicinity of two
opposite charges, where the negative charge is three times
as great in magnitude as the positive. See Figure 19.34 for a
similar situation. Indicate the direction of increasing potential.

41. Sketch the equipotential lines in the vicinity of the
negatively charged conductor in Figure 19.35. How will these
equipotentials look a long distance from the object?

Figure 19.35 A negatively charged conductor.

42. Sketch the equipotential lines surrounding the two
conducting plates shown in Figure 19.36, given the top plate
is positive and the bottom plate has an equal amount of
negative charge. Be certain to indicate the distribution of
charge on the plates. Is the field strongest where the plates
are closest? Why should it be?

Figure 19.36

43. (a) Sketch the electric field lines in the vicinity of the
charged insulator in Figure 19.37. Note its non-uniform
charge distribution. (b) Sketch equipotential lines surrounding
the insulator. Indicate the direction of increasing potential.

Figure 19.37 A charged insulating rod such as might be used in a
classroom demonstration.

44. The naturally occurring charge on the ground on a fine

day out in the open country is –1.00 nC/m2 . (a) What is the
electric field relative to ground at a height of 3.00 m? (b)
Calculate the electric potential at this height. (c) Sketch
electric field and equipotential lines for this scenario.

45. The lesser electric ray (Narcine bancroftii) maintains an
incredible charge on its head and a charge equal in
magnitude but opposite in sign on its tail (Figure 19.38). (a)
Sketch the equipotential lines surrounding the ray. (b) Sketch
the equipotentials when the ray is near a ship with a
conducting surface. (c) How could this charge distribution be
of use to the ray?

Figure 19.38 Lesser electric ray (Narcine bancroftii) (credit: National
Oceanic and Atmospheric Administration, NOAA's Fisheries Collection).

19.5 Capacitors and Dielectrics
46. What charge is stored in a 180 µF capacitor when 120

V is applied to it?

47. Find the charge stored when 5.50 V is applied to an 8.00
pF capacitor.

48. What charge is stored in the capacitor in Example 19.8?

49. Calculate the voltage applied to a 2.00 µF capacitor

when it holds 3.10 µC of charge.

50. What voltage must be applied to an 8.00 nF capacitor to
store 0.160 mC of charge?
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51. What capacitance is needed to store 3.00 µC of charge

at a voltage of 120 V?

52. What is the capacitance of a large Van de Graaff
generator’s terminal, given that it stores 8.00 mC of charge at
a voltage of 12.0 MV?

53. Find the capacitance of a parallel plate capacitor having

plates of area 5.00 m2 that are separated by 0.100 mm of
Teflon.

54. (a)What is the capacitance of a parallel plate capacitor

having plates of area 1.50 m2 that are separated by 0.0200
mm of neoprene rubber? (b) What charge does it hold when
9.00 V is applied to it?

55. Integrated Concepts

A prankster applies 450 V to an 80.0 µF capacitor and then

tosses it to an unsuspecting victim. The victim’s finger is
burned by the discharge of the capacitor through 0.200 g of
flesh. What is the temperature increase of the flesh? Is it
reasonable to assume no phase change?

56. Unreasonable Results

(a) A certain parallel plate capacitor has plates of area

4.00 m2 , separated by 0.0100 mm of nylon, and stores
0.170 C of charge. What is the applied voltage? (b) What is
unreasonable about this result? (c) Which assumptions are
responsible or inconsistent?

19.6 Capacitors in Series and Parallel
57. Find the total capacitance of the combination of
capacitors in Figure 19.39.

Figure 19.39 A combination of series and parallel connections of
capacitors.

58. Suppose you want a capacitor bank with a total
capacitance of 0.750 F and you possess numerous 1.50 mF
capacitors. What is the smallest number you could hook
together to achieve your goal, and how would you connect
them?

59. What total capacitances can you make by connecting a
5.00 µF and an 8.00 µF capacitor together?

60. Find the total capacitance of the combination of
capacitors shown in Figure 19.40.

Figure 19.40 A combination of series and parallel connections of
capacitors.

61. Find the total capacitance of the combination of
capacitors shown in Figure 19.41.

Figure 19.41 A combination of series and parallel connections of
capacitors.

62. Unreasonable Results

(a) An 8.00 µF capacitor is connected in parallel to another

capacitor, producing a total capacitance of 5.00 µF . What is

the capacitance of the second capacitor? (b) What is
unreasonable about this result? (c) Which assumptions are
unreasonable or inconsistent?

19.7 Energy Stored in Capacitors
63. (a) What is the energy stored in the 10.0 µF capacitor of

a heart defibrillator charged to 9.00×103 V ? (b) Find the
amount of stored charge.

64. In open heart surgery, a much smaller amount of energy
will defibrillate the heart. (a) What voltage is applied to the
8.00 µF capacitor of a heart defibrillator that stores 40.0 J of

energy? (b) Find the amount of stored charge.

65. A 165 µF capacitor is used in conjunction with a motor.

How much energy is stored in it when 119 V is applied?

66. Suppose you have a 9.00 V battery, a 2.00 µF capacitor,

and a 7.40 µF capacitor. (a) Find the charge and energy

stored if the capacitors are connected to the battery in series.
(b) Do the same for a parallel connection.
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67. A nervous physicist worries that the two metal shelves of
his wood frame bookcase might obtain a high voltage if
charged by static electricity, perhaps produced by friction. (a)
What is the capacitance of the empty shelves if they have

area 1.00×102 m2 and are 0.200 m apart? (b) What is the
voltage between them if opposite charges of magnitude 2.00
nC are placed on them? (c) To show that this voltage poses a
small hazard, calculate the energy stored.

68. Show that for a given dielectric material the maximum
energy a parallel plate capacitor can store is directly
proportional to the volume of dielectric ( Volume = A · d ).
Note that the applied voltage is limited by the dielectric
strength.

69. Construct Your Own Problem

Consider a heart defibrillator similar to that discussed in
Example 19.11. Construct a problem in which you examine
the charge stored in the capacitor of a defibrillator as a
function of stored energy. Among the things to be considered
are the applied voltage and whether it should vary with
energy to be delivered, the range of energies involved, and
the capacitance of the defibrillator. You may also wish to
consider the much smaller energy needed for defibrillation
during open-heart surgery as a variation on this problem.

70. Unreasonable Results

(a) On a particular day, it takes 9.60×103 J of electric
energy to start a truck’s engine. Calculate the capacitance of
a capacitor that could store that amount of energy at 12.0 V.
(b) What is unreasonable about this result? (c) Which
assumptions are responsible?

Test Prep for AP® Courses

19.1 Electric Potential Energy: Potential
Difference
1. An electron is placed in an electric field of 12.0 N/C to the
right. What is the resulting force on the electron?

a. 1.33×10-20 N right
b. 1.33×10-20 N left
c. 1.92×10-18 N right
d. 1.92×10-18 N left

2. A positively charged object in a certain electric field is
currently being pushed west by the resulting force. How will
the force change if the charge grows? What if it becomes
negative?

3. A −5.0 C charge is being forced south by a 60 N force.
What are the magnitude and direction of the local electric
field?

a. 12 N/C south
b. 12 N/C north
c. 300 N/C south
d. 300 N/C north

4. A charged object has a net force of 100 N east acting on it
due to an electric field of 50 N/C pointing north. How is this
possible? If not, why not?

5. How many electrons have to be moved by a car battery
containing 7.20×105 J at 12 V to reduce the energy by 1%?

a. 4.80×1027

b. 4.00×1026

c. 3.75×1021

d. 3.13×1020

6. Most of the electricity in the power grid is generated by
powerful turbines spinning around. Why don’t these turbines
slow down from the work they do moving electrons?

7. A typical AAA battery can move 2000 C of charge at 1.5 V.
How long will this run a 50 mW LED?

a. 1000 minutes
b. 120,000 seconds
c. 15 hours
d. 250 minutes

8. Find an example car (or other vehicle) battery, and
compute how many of the AAA batteries in the previous
problem it would take to equal the energy stored in it. Which
is more compact?

9. What is the internal energy of a system consisting of two
point charges, one 2.0 µC, and the other −3.0 µC, placed 1.2
m away from each other?

a. −3.8×10-2 J
b. −4.5×10-2 J
c. 4.5×10-2 J
d. 3.8×10-2 J

10. A system of three point charges has a 1.00 µC charge at
the origin, a −2.00 µC charge at x=30 cm, and a 3.00 µC
charge at x=70 cm. What is the total stored potential energy
of this configuration?

Chapter 19 | Electric Potential and Electric Field 873



11. A system has 2.00 µC charges at (50 cm, 0) and (−50 cm,
0) and a −1.00 µC charge at (0, 70 cm). As the y-coordinate
of the −1.00 µC charge increases, the potential energy ___.
As the y-coordinate of the −1.00 µC charge decreases, the
potential energy ___.

a. increases, increases
b. increases, decreases
c. decreases, increases
d. decreases, decreases

12. A system of three point charges has a 1.00 µC charge at
the origin, a −2.00 µC charge at x=30 cm, and a 3.00 µC
charge at x=70 cm. What happens to the total potential
energy of this system if the −2.00 µC charge and the 3.00 µC
charge trade places?

13. Take a square configuration of point charges, two positive
and two negative, all of the same magnitude, with like
charges sharing diagonals. What will happen to the internal
energy of this system if one of the negative charges becomes
a positive charge of the same magnitude?

a. increase
b. decrease
c. no change
d. not enough information

14. Take a square configuration of point charges, two positive
and two negative, all of the same magnitude, with like
charges sharing diagonals. What will happen to the internal
energy of this system if the sides of the square decrease in
length?

15. A system has 2.00 µC charges at (50 cm, 0) and (−50 cm,
0) and a −1.00 µC charge at (0, 70 cm), with a velocity in the
–y-direction. When the −1.00 µC charge is at (0, 0) the
potential energy is at a ___ and the kinetic energy is ___.

a. maximum, maximum
b. maximum, minimum
c. minimum, maximum
d. minimum, minimum

16. What is the velocity of an electron that goes through a 10
V potential after initially being at rest?

19.2 Electric Potential in a Uniform Electric
Field
17. A negatively charged massive particle is dropped from
above the two plates in Figure 19.7 into the space between
them. Which best describes the trajectory it takes?

a. A rightward-curving parabola
b. A leftward-curving parabola
c. A rightward-curving section of a circle
d. A leftward-curving section of a circle

18. Two massive particles with identical charge are launched
into the uniform field between two plates from the same
launch point with the same velocity. They both impact the
positively charged plate, but the second one does so four
times as far as the first. What sign is the charge? What
physical difference would give them different impact points
(quantify as a relative percent)? How does this compare to
the gravitational projectile motion case?

19. Two plates are lying horizontally, but stacked with one
10.0 cm above the other. If the upper plate is held at +100 V,
what is the magnitude and direction of the electric field
between the plates if the lower is held at +50.0 V? -50.0 V?

a. 500 V/m, 1500 V/m, down
b. 500 V/m, 1500 V/m, up
c. 1500 V/m, 500 V/m, down
d. 1500 V/m, 500 V/m, up

20. Two parallel conducting plates are 15 cm apart, each with
an area of 0.75 m2. The left one has a charge of -0.225 C
placed on it, while the right has a charge of 0.225 C. What is
the magnitude and direction of the electric field between the
two?

21. Consider three parallel conducting plates, with a space of
3.0 cm between them. The leftmost one is at a potential of
+45 V, the middle one is held at ground, and the rightmost is
at a potential of -75 V. What is the magnitude of the average
electric field on an electron traveling between the plates?
(Assume that the middle one has holes for the electron to go
through.)

a. 1500 V/m
b. 2500 V/m
c. 4000 V/m
d. 2000 V/m

22. A new kind of electron gun has a rear plate at −25.0 kV, a
grounded plate 2.00 cm in front of that, and a +25.0 kV plate
4.00 cm in front of that. What is the magnitude of the average
electric field?

23. A certain electric potential isoline graph has isolines every
5.0 V. If six of these lines cross a 40 cm path drawn between
two points of interest, what is the (magnitude of the average)
electric field along this path?

a. 750 V/m
b. 150 V/m
c. 38 V/m
d. 75 V/m

24. Given a system of two parallel conducting plates held at a
fixed potential difference, describe what happens to the
isolines of the electric potential between them as the distance
between them is changed. How does this relate to the electric
field strength?

19.4 Equipotential Lines
25. How would Figure 19.15 be different with two positive
charges replacing the two negative charges?

a. The equipotential lines would have positive values.
b. It would actually resemble Figure 19.14.
c. no change
d. not enough information

26. Consider two conducting plates, placed on adjacent sides
of a square, but with a 1-m space between the corner of the
square and the plate. These plates are not touching, not
centered on each other, but are at right angles. Each plate is
1 m wide. If the plates are held at a fixed potential difference
ΔV, draw the equipotential lines for this system.

27. As isolines of electric potential get closer together, the
electric field gets stronger. What shape would a hill have as
the isolines of gravitational potential get closer together?

a. constant slope
b. steeper slope
c. shallower slope
d. a U-shape

28. Between Figure 19.14 and Figure 19.15, which more
closely resembles the gravitational field between two equal
masses, and why?

29. How much work is necessary to keep a positive point
charge in orbit around a negative point charge?
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a. A lot; this system is unstable.
b. Just a little; the isolines are far enough apart that

crossing them doesn’t take much work.
c. None; we’re traveling along an isoline, which requires

no work.
d. There’s not enough information to tell.

30. Consider two conducting plates, placed on adjacent sides
of a square, but with a 1-m space between the corner of the
square and the plate. These plates are not touching, not
centered on each other, but are at right angles. Each plate is
1 m wide. If the plates are held at a fixed potential difference
ΔV, sketch the path of both a positively charged object placed
between the near ends, and a negatively charged object
placed near the open ends.

19.5 Capacitors and Dielectrics
31. Two parallel plate capacitors are otherwise identical,
except the second one has twice the distance between the
plates of the first. If placed in otherwise identical circuits, how
much charge will the second plate have on it compared to the
first?

a. four times as much
b. twice as much
c. the same
d. half as much

32. In a very simple circuit consisting of a battery and a
capacitor with an adjustable distance between the plates, how
does the voltage vary as the distance is altered?

33. A parallel plate capacitor with adjustable-size square
plates is placed in a circuit. How does the charge on the
capacitor change as the length of the sides of the plates is
increased?

a. it grows proportional to length2

b. it grows proportional to length
c. it shrinks proportional to length
d. it shrinks proportional to length2

34. Design an experiment to test the relative permittivities of
various materials, and briefly describe some basic features of
the results.

35. A student was changing one of the dimensions of a
square parallel plate capacitor and measuring the resultant
charge in a circuit with a battery. However, the student forgot
which dimension was being varied, and didn’t write it or any
units down. Given the table, which dimension was it?

Table 19.2

Dimension 1.00 1.10 1.20 1.30

Charge(µC) 0.50 0.61 0.71 0.86

a. The distance between the plates
b. The area
c. The length of a side
d. Both the area and the length of a side

36. In an experiment in which a circular parallel plate
capacitor in a circuit with a battery has the radius and plate
separation grow at the same relative rate, what will happen to
the total charge on the capacitor?

19.7 Energy Stored in Capacitors
37. Consider a parallel plate capacitor, with no dielectric
material, attached to a battery with a fixed voltage. What
happens when a dielectric is inserted into the capacitor?

a. Nothing changes, except now there is a dielectric in the
capacitor.

b. The energy in the system decreases, making it very
easy to move the dielectric in.

c. You have to do work to move the dielectric, increasing
the energy in the system.

d. The reversed polarity destroys the battery.

38. Consider a parallel plate capacitor with no dielectric
material. It was attached to a battery with a fixed voltage to
charge up, but now the battery has been disconnected. What
happens to the energy of the system and the dielectric
material when a dielectric is inserted into the capacitor?

39. What happens to the energy stored in a circuit as you
increase the number of capacitors connected in parallel?
Series?

a. increases, increases
b. increases, decreases
c. decreases, increases
d. decreases, decreases

40. What would the capacitance of a capacitor with the same
total internal energy as the car battery in Example 19.1 have
to be? Can you explain why we use batteries instead of
capacitors for this application?

41. Consider a parallel plate capacitor with metal plates, each
of square shape of 1.00 m on a side, separated by 1.00 mm.
What is the energy of this capacitor with 3.00×103 V applied
to it?

a. 3.98×10-2 J
b. 5.08×1014 J
c. 1.33×10-5 J
d. 1.69×1011 J

42. Consider a parallel plate capacitor with metal plates, each
of square shape of 1.00 m on a side, separated by 1.00 mm.
What is the internal energy stored in this system if the charge
on the capacitor is 30.0 µC?

43. Consider a parallel plate capacitor with metal plates, each
of square shape of 1.00 m on a side, separated by 1.00 mm.
If the plates grow in area while the voltage is held fixed, the
capacitance ___ and the stored energy ___.

a. decreases, decreases
b. decreases, increases
c. increases, decreases
d. increases, increases

44. Consider a parallel plate capacitor with metal plates, each
of square shape of 1.00 m on a side, separated by 1.00 mm.
What happens to the energy of this system if the area of the
plates increases while the charge remains fixed?
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